Diese alternative Lösung hat den Vorteil, dass sie unter Verwendung von 3D-Direktiven erstellt wurde. Daher war es einfach, sie in ein Manipulate einzubinden, und Sie können sie mit der Maus ziehen, um den Blickwinkel zu ändern:
Manipulate[
Module[{x = Sin[\[Phi]] Cos[\[Theta]], y = Sin[\[Phi]] Sin[\[Theta]],
z = Cos[\[Phi]]},
Show[
ParametricPlot3D[
{{Cos[t], Sin[t], 0},
{0, Sin[t], Cos[t]},
{Sin[t], 0, Cos[t]}},
{t, 0, 2 \[Pi]}, PlotStyle -> Black, Boxed -> False,
Axes -> False, AxesLabel -> {"x", "y", "z"}],
ParametricPlot3D[0.5*{Cos[t], Sin[t], 0}, {t, 0, \[Theta]}],
ParametricPlot3D[
RotationTransform[\[Theta], {0, 0, 1}][{Sin[t]/2, 0,
Cos[t]/2}], {t, 0, \[Phi]}],
Graphics3D[{
{{Blue, Thick,
Arrow[{{0, 0, 0}, #}] & /@ {{1, 0, 0}, {0, 1, 0}, {0, 0,
1}, {x, y, z}}},
{Opacity[0.1],
Red, Polygon[{{0, 0, 0}, {x, y, 0}, {x, y, z}}],
Green, Polygon[{{0, 0, 0}, {x, 0, 0}, {x, y, 0}}]}},
{Opacity[0.05], Sphere[{0, 0, 0}]},
{Text["O", {-.03, -.03, -.03}],
Text["X", {1.1, 0, 0}],
Text["Q", {x, y, 0}, {1, 1}],
Text["P", {x, y, z}, {0, -1}],
Text["Y", {0, 1.1, 0}],
Text["Z", {0, 0, 1.1}],
Text["r", {x/2, y/2, 0}, {1, 1}],
Text[
"\[Theta]", {Cos[\[Theta]/2]/2, Sin[\[Theta]/2]/2, 0}, {1,
1}],
Text["\[Phi]",
RotationTransform[\[Theta], {0, 0, 1}][{Sin[\[Phi]/2]/2, 0,
Cos[\[Phi]/2]/2}], {1, 1}]}}]]],
{{\[Phi], \[Pi]/4}, 0.01, \[Pi]/2}, {{\[Theta], \[Pi]/4}, 0.01,
2 \[Pi]}]