541 Stimmen

Wie man einen hierarchischen Index in Spalten reduziert

Ich habe einen Datenrahmen mit einem hierarchischen Index in Achse 1 (Spalten) (aus einer groupby.agg Betrieb):

     USAF   WBAN  year  month  day  s_PC  s_CL  s_CD  s_CNT  tempf       
                                     sum   sum   sum    sum   amax   amin
0  702730  26451  1993      1    1     1     0    12     13  30.92  24.98
1  702730  26451  1993      1    2     0     0    13     13  32.00  24.98
2  702730  26451  1993      1    3     1    10     2     13  23.00   6.98
3  702730  26451  1993      1    4     1     0    12     13  10.04   3.92
4  702730  26451  1993      1    5     3     0    10     13  19.94  10.94

Ich möchte sie abflachen, so dass sie wie folgt aussieht (die Namen sind nicht entscheidend - ich könnte sie umbenennen):

     USAF   WBAN  year  month  day  s_PC  s_CL  s_CD  s_CNT  tempf_amax  tmpf_amin   
0  702730  26451  1993      1    1     1     0    12     13  30.92          24.98
1  702730  26451  1993      1    2     0     0    13     13  32.00          24.98
2  702730  26451  1993      1    3     1    10     2     13  23.00          6.98
3  702730  26451  1993      1    4     1     0    12     13  10.04          3.92
4  702730  26451  1993      1    5     3     0    10     13  19.94          10.94

Wie kann ich das tun? (Ich habe schon viel versucht, ohne Erfolg.)

Auf Anregung ist hier der Kopf in Diktatform

{('USAF', ''): {0: '702730',
  1: '702730',
  2: '702730',
  3: '702730',
  4: '702730'},
 ('WBAN', ''): {0: '26451', 1: '26451', 2: '26451', 3: '26451', 4: '26451'},
 ('day', ''): {0: 1, 1: 2, 2: 3, 3: 4, 4: 5},
 ('month', ''): {0: 1, 1: 1, 2: 1, 3: 1, 4: 1},
 ('s_CD', 'sum'): {0: 12.0, 1: 13.0, 2: 2.0, 3: 12.0, 4: 10.0},
 ('s_CL', 'sum'): {0: 0.0, 1: 0.0, 2: 10.0, 3: 0.0, 4: 0.0},
 ('s_CNT', 'sum'): {0: 13.0, 1: 13.0, 2: 13.0, 3: 13.0, 4: 13.0},
 ('s_PC', 'sum'): {0: 1.0, 1: 0.0, 2: 1.0, 3: 1.0, 4: 3.0},
 ('tempf', 'amax'): {0: 30.920000000000002,
  1: 32.0,
  2: 23.0,
  3: 10.039999999999999,
  4: 19.939999999999998},
 ('tempf', 'amin'): {0: 24.98,
  1: 24.98,
  2: 6.9799999999999969,
  3: 3.9199999999999982,
  4: 10.940000000000001},
 ('year', ''): {0: 1993, 1: 1993, 2: 1993, 3: 1993, 4: 1993}}

8voto

jxstanford Punkte 3240

Eine allgemeine Lösung, die mehrere Ebenen und gemischte Typen handhabt:

df.columns = ['_'.join(tuple(map(str, t))) for t in df.columns.values]

5voto

Niels Punkte 182

Vielleicht ein bisschen spät, aber wenn Sie sich keine Sorgen um doppelte Spaltennamen machen:

df.columns = df.columns.tolist()

3voto

Nolan Conaway Punkte 2413

In Anlehnung an @jxstanford und @tvt173 habe ich eine schnelle Funktion geschrieben, die unabhängig von String/Int-Spaltennamen funktionieren sollte:

def flatten_cols(df):
    df.columns = [
        '_'.join(tuple(map(str, t))).rstrip('_') 
        for t in df.columns.values
        ]
    return df

3voto

Lean Bravo Punkte 361

Ich werde einen einfachen Weg aufzeigen, der bei mir funktioniert hat.

[" ".join([str(elem) for elem in tup]) for tup in df.columns.tolist()]
#df = df.reset_index() if needed

3voto

agartland Punkte 1634

Falls Sie ein Trennzeichen im Namen zwischen den Ebenen haben möchten, funktioniert diese Funktion gut.

def flattenHierarchicalCol(col,sep = '_'):
    if not type(col) is tuple:
        return col
    else:
        new_col = ''
        for leveli,level in enumerate(col):
            if not level == '':
                if not leveli == 0:
                    new_col += sep
                new_col += level
        return new_col

df.columns = df.columns.map(flattenHierarchicalCol)

CodeJaeger.com

CodeJaeger ist eine Gemeinschaft für Programmierer, die täglich Hilfe erhalten..
Wir haben viele Inhalte, und Sie können auch Ihre eigenen Fragen stellen oder die Fragen anderer Leute lösen.

Powered by:

X