352 Stimmen

Wie kann man den Wert von π am schnellsten ermitteln?

Ich suche nach dem schnellsten Weg, den Wert von zu erhalten, als persönliche Herausforderung. Genauer gesagt, suche ich nach Wegen, die nicht die Verwendung von #define Konstanten wie M_PI oder die Nummer fest eintippen.

Das folgende Programm testet die verschiedenen mir bekannten Möglichkeiten. Die Inline-Assembly-Version ist theoretisch die schnellste Option, obwohl sie natürlich nicht portabel ist. Ich habe sie als Basis für den Vergleich mit den anderen Versionen aufgenommen. In meinen Tests, mit eingebauten Komponenten, war die 4 * atan(1) Version ist auf GCC 4.2 am schnellsten, weil sie die automatische Faltung der atan(1) in eine Konstante. Mit -fno-builtin angegeben, die atan2(0, -1) Version ist am schnellsten.

Hier ist das Haupttestprogramm ( pitimes.c ) :

#include <math.h>
#include <stdio.h>
#include <time.h>

#define ITERS 10000000
#define TESTWITH(x) {                                                       \
    diff = 0.0;                                                             \
    time1 = clock();                                                        \
    for (i = 0; i < ITERS; ++i)                                             \
        diff += (x) - M_PI;                                                 \
    time2 = clock();                                                        \
    printf("%s\t=> %e, time => %f\n", #x, diff, diffclock(time2, time1));   \
}

static inline double
diffclock(clock_t time1, clock_t time0)
{
    return (double) (time1 - time0) / CLOCKS_PER_SEC;
}

int
main()
{
    int i;
    clock_t time1, time2;
    double diff;

    /* Warmup. The atan2 case catches GCC's atan folding (which would
     * optimise the ``4 * atan(1) - M_PI'' to a no-op), if -fno-builtin
     * is not used. */
    TESTWITH(4 * atan(1))
    TESTWITH(4 * atan2(1, 1))

#if defined(__GNUC__) && (defined(__i386__) || defined(__amd64__))
    extern double fldpi();
    TESTWITH(fldpi())
#endif

    /* Actual tests start here. */
    TESTWITH(atan2(0, -1))
    TESTWITH(acos(-1))
    TESTWITH(2 * asin(1))
    TESTWITH(4 * atan2(1, 1))
    TESTWITH(4 * atan(1))

    return 0;
}

Und die Inline-Assembly-Sachen ( fldpi.c ), die nur für x86- und x64-Systeme funktioniert:

double
fldpi()
{
    double pi;
    asm("fldpi" : "=t" (pi));
    return pi;
}

Und ein Build-Skript, das alle Konfigurationen erstellt, die ich teste ( build.sh ) :

#!/bin/sh
gcc -O3 -Wall -c           -m32 -o fldpi-32.o fldpi.c
gcc -O3 -Wall -c           -m64 -o fldpi-64.o fldpi.c

gcc -O3 -Wall -ffast-math  -m32 -o pitimes1-32 pitimes.c fldpi-32.o
gcc -O3 -Wall              -m32 -o pitimes2-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -fno-builtin -m32 -o pitimes3-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -ffast-math  -m64 -o pitimes1-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall              -m64 -o pitimes2-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall -fno-builtin -m64 -o pitimes3-64 pitimes.c fldpi-64.o -lm

Abgesehen vom Testen zwischen verschiedenen Compiler-Flags (ich habe auch 32-Bit mit 64-Bit verglichen, weil die Optimierungen unterschiedlich sind), habe ich auch versucht, die Reihenfolge der Tests umzukehren. Aber immer noch ist die atan2(0, -1) Version immer noch jedes Mal die Nase vorn hat.

20voto

NihilistDandy Punkte 181

Verwenden Sie die Machin-ähnliche Formel

176 * arctan (1/57) + 28 * arctan (1/239) - 48 * arctan (1/682) + 96 * arctan(1/12943) 

[; \left( 176 \arctan \frac{1}{57} + 28 \arctan \frac{1}{239} - 48 \arctan \frac{1}{682} + 96 \arctan \frac{1}{12943}\right) ;], for you TeX the World people.

Implementiert in Scheme, zum Beispiel:

(+ (- (+ (* 176 (atan (/ 1 57))) (* 28 (atan (/ 1 239)))) (* 48 (atan (/ 1 682)))) (* 96 (atan (/ 1 12943))))

19voto

Pi ist genau 3! [Prof. Frink (Simpsons)]

Ein Scherz, aber hier ist einer in C# (.NET-Framework erforderlich).

using System;
using System.Text;

class Program {
    static void Main(string[] args) {
        int Digits = 100;

        BigNumber x = new BigNumber(Digits);
        BigNumber y = new BigNumber(Digits);
        x.ArcTan(16, 5);
        y.ArcTan(4, 239);
        x.Subtract(y);
        string pi = x.ToString();
        Console.WriteLine(pi);
    }
}

public class BigNumber {
    private UInt32[] number;
    private int size;
    private int maxDigits;

    public BigNumber(int maxDigits) {
        this.maxDigits = maxDigits;
        this.size = (int)Math.Ceiling((float)maxDigits * 0.104) + 2;
        number = new UInt32[size];
    }
    public BigNumber(int maxDigits, UInt32 intPart)
        : this(maxDigits) {
        number[0] = intPart;
        for (int i = 1; i < size; i++) {
            number[i] = 0;
        }
    }
    private void VerifySameSize(BigNumber value) {
        if (Object.ReferenceEquals(this, value))
            throw new Exception("BigNumbers cannot operate on themselves");
        if (value.size != this.size)
            throw new Exception("BigNumbers must have the same size");
    }

    public void Add(BigNumber value) {
        VerifySameSize(value);

        int index = size - 1;
        while (index >= 0 && value.number[index] == 0)
            index--;

        UInt32 carry = 0;
        while (index >= 0) {
            UInt64 result = (UInt64)number[index] +
                            value.number[index] + carry;
            number[index] = (UInt32)result;
            if (result >= 0x100000000U)
                carry = 1;
            else
                carry = 0;
            index--;
        }
    }
    public void Subtract(BigNumber value) {
        VerifySameSize(value);

        int index = size - 1;
        while (index >= 0 && value.number[index] == 0)
            index--;

        UInt32 borrow = 0;
        while (index >= 0) {
            UInt64 result = 0x100000000U + (UInt64)number[index] -
                            value.number[index] - borrow;
            number[index] = (UInt32)result;
            if (result >= 0x100000000U)
                borrow = 0;
            else
                borrow = 1;
            index--;
        }
    }
    public void Multiply(UInt32 value) {
        int index = size - 1;
        while (index >= 0 && number[index] == 0)
            index--;

        UInt32 carry = 0;
        while (index >= 0) {
            UInt64 result = (UInt64)number[index] * value + carry;
            number[index] = (UInt32)result;
            carry = (UInt32)(result >> 32);
            index--;
        }
    }
    public void Divide(UInt32 value) {
        int index = 0;
        while (index < size && number[index] == 0)
            index++;

        UInt32 carry = 0;
        while (index < size) {
            UInt64 result = number[index] + ((UInt64)carry << 32);
            number[index] = (UInt32)(result / (UInt64)value);
            carry = (UInt32)(result % (UInt64)value);
            index++;
        }
    }
    public void Assign(BigNumber value) {
        VerifySameSize(value);
        for (int i = 0; i < size; i++) {
            number[i] = value.number[i];
        }
    }

    public override string ToString() {
        BigNumber temp = new BigNumber(maxDigits);
        temp.Assign(this);

        StringBuilder sb = new StringBuilder();
        sb.Append(temp.number[0]);
        sb.Append(System.Globalization.CultureInfo.CurrentCulture.NumberFormat.CurrencyDecimalSeparator);

        int digitCount = 0;
        while (digitCount < maxDigits) {
            temp.number[0] = 0;
            temp.Multiply(100000);
            sb.AppendFormat("{0:D5}", temp.number[0]);
            digitCount += 5;
        }

        return sb.ToString();
    }
    public bool IsZero() {
        foreach (UInt32 item in number) {
            if (item != 0)
                return false;
        }
        return true;
    }

    public void ArcTan(UInt32 multiplicand, UInt32 reciprocal) {
        BigNumber X = new BigNumber(maxDigits, multiplicand);
        X.Divide(reciprocal);
        reciprocal *= reciprocal;

        this.Assign(X);

        BigNumber term = new BigNumber(maxDigits);
        UInt32 divisor = 1;
        bool subtractTerm = true;
        while (true) {
            X.Divide(reciprocal);
            term.Assign(X);
            divisor += 2;
            term.Divide(divisor);
            if (term.IsZero())
                break;

            if (subtractTerm)
                this.Subtract(term);
            else
                this.Add(term);
            subtractTerm = !subtractTerm;
        }
    }
}

19voto

Daniel C. Sobral Punkte 290004

Wenn Sie bereit sind, einen Näherungswert zu verwenden, 355 / 113 ist für 6 Dezimalstellen geeignet und hat den zusätzlichen Vorteil, dass sie mit ganzzahligen Ausdrücken verwendet werden kann. Das ist heutzutage nicht mehr so wichtig, da der Begriff "Fließkomma-Mathe-Coprozessor" keine Bedeutung mehr hat, aber früher war er sehr wichtig.

18voto

qwerty01 Punkte 171

Mit Doppelgänger:

4.0 * (4.0 * Math.Atan(0.2) - Math.Atan(1.0 / 239.0))

Dies ist bis auf 14 Dezimalstellen genau, genug, um einen Doppelgänger zu füllen (die Ungenauigkeit ist wahrscheinlich darauf zurückzuführen, dass die restlichen Dezimalstellen in den Bogen-Tangenten abgeschnitten werden).

Auch Seth, es ist 3.14159265358979323846 3 , nicht 64.

17voto

Brad Gilbert Punkte 33120

Berechnen Sie PI zur Kompilierzeit mit D.

( Kopiert von DSource.org )

/** Calculate pi at compile time
 *
 * Compile with dmd -c pi.d
 */
module calcpi;

import meta.math;
import meta.conv;

/** real evaluateSeries!(real x, real metafunction!(real y, int n) term)
 *
 * Evaluate a power series at compile time.
 *
 * Given a metafunction of the form
 *  real term!(real y, int n),
 * which gives the nth term of a convergent series at the point y
 * (where the first term is n==1), and a real number x,
 * this metafunction calculates the infinite sum at the point x
 * by adding terms until the sum doesn't change any more.
 */
template evaluateSeries(real x, alias term, int n=1, real sumsofar=0.0)
{
  static if (n>1 && sumsofar == sumsofar + term!(x, n+1)) {
     const real evaluateSeries = sumsofar;
  } else {
     const real evaluateSeries = evaluateSeries!(x, term, n+1, sumsofar + term!(x, n));
  }
}

/*** Calculate atan(x) at compile time.
 *
 * Uses the Maclaurin formula
 *  atan(z) = z - z^3/3 + Z^5/5 - Z^7/7 + ...
 */
template atan(real z)
{
    const real atan = evaluateSeries!(z, atanTerm);
}

template atanTerm(real x, int n)
{
    const real atanTerm =  (n & 1 ? 1 : -1) * pow!(x, 2*n-1)/(2*n-1);
}

/// Machin's formula for pi
/// pi/4 = 4 atan(1/5) - atan(1/239).
pragma(msg, "PI = " ~ fcvt!(4.0 * (4*atan!(1/5.0) - atan!(1/239.0))) );

CodeJaeger.com

CodeJaeger ist eine Gemeinschaft für Programmierer, die täglich Hilfe erhalten..
Wir haben viele Inhalte, und Sie können auch Ihre eigenen Fragen stellen oder die Fragen anderer Leute lösen.

Powered by:

X