Ich trainiere ein neuronales XOR-Netz über Back-Propagation mit stochastischem Gradientenabstieg. Die Gewichte des neuronalen Netzes werden mit Zufallswerten zwischen -0,5 und 0,5 initialisiert. Das neuronale Netz trainiert sich in etwa 80 % der Zeit erfolgreich selbst. Manchmal bleibt es jedoch beim Backpropagating "stecken". Mit "stecken bleiben" meine ich, dass die Fehlerkorrekturrate abnimmt. Während eines erfolgreichen Trainings nimmt der Gesamtfehler zum Beispiel ziemlich schnell ab, wenn das Netz lernt, etwa so:
...
...
Total error for this training set: 0.0010008071327708653
Total error for this training set: 0.001000750550254843
Total error for this training set: 0.001000693973929822
Total error for this training set: 0.0010006374037948094
Total error for this training set: 0.0010005808398488103
Total error for this training set: 0.0010005242820908169
Total error for this training set: 0.0010004677305198344
Total error for this training set: 0.0010004111851348654
Total error for this training set: 0.0010003546459349181
Total error for this training set: 0.0010002981129189812
Total error for this training set: 0.0010002415860860656
Total error for this training set: 0.0010001850654351723
Total error for this training set: 0.001000128550965301
Total error for this training set: 0.0010000720426754587
Total error for this training set: 0.0010000155405646494
Total error for this training set: 9.99959044631871E-4
Testing trained XOR neural network
0 XOR 0: 0.023956746649767453
0 XOR 1: 0.9736079194769579
1 XOR 0: 0.9735670067093437
1 XOR 1: 0.045068688874314006
Wenn er jedoch feststeckt, nimmt die Gesamtzahl der Fehler ab, aber anscheinend mit abnehmender Geschwindigkeit:
...
...
Total error for this training set: 0.12325486644721295
Total error for this training set: 0.12325486642503929
Total error for this training set: 0.12325486640286581
Total error for this training set: 0.12325486638069229
Total error for this training set: 0.12325486635851894
Total error for this training set: 0.12325486633634561
Total error for this training set: 0.1232548663141723
Total error for this training set: 0.12325486629199914
Total error for this training set: 0.12325486626982587
Total error for this training set: 0.1232548662476525
Total error for this training set: 0.12325486622547954
Total error for this training set: 0.12325486620330656
Total error for this training set: 0.12325486618113349
Total error for this training set: 0.12325486615896045
Total error for this training set: 0.12325486613678775
Total error for this training set: 0.12325486611461482
Total error for this training set: 0.1232548660924418
Total error for this training set: 0.12325486607026936
Total error for this training set: 0.12325486604809655
Total error for this training set: 0.12325486602592373
Total error for this training set: 0.12325486600375107
Total error for this training set: 0.12325486598157878
Total error for this training set: 0.12325486595940628
Total error for this training set: 0.1232548659372337
Total error for this training set: 0.12325486591506139
Total error for this training set: 0.12325486589288918
Total error for this training set: 0.12325486587071677
Total error for this training set: 0.12325486584854453
Als ich mich über neuronale Netze informierte, stieß ich auf eine Diskussion über lokale Minima und globale Minima und darüber, dass neuronale Netze nicht wirklich "wissen", auf welche Minima sie zusteuern sollen.
Bleibt mein Netzwerk in einem lokalen Minima statt in einem globalen Minima stecken?