a = [1,2,3,4,5]
b = [1,3,5,6]
c = a and b
print c
tatsächliche Leistung: [1,3,5,6]
erwartete Ausgabe: [1,3,5]
Wie kann man eine boolesche UND-Verknüpfung (Listenschnittmenge) zweier Listen erreichen?
a = [1,2,3,4,5]
b = [1,3,5,6]
c = a and b
print c
tatsächliche Leistung: [1,3,5,6]
erwartete Ausgabe: [1,3,5]
Wie kann man eine boolesche UND-Verknüpfung (Listenschnittmenge) zweier Listen erreichen?
Machen Sie ein Set aus dem größeren:
_auxset = set(a)
Dann,
c = [x for x in b if x in _auxset]
wird das tun, was Sie wollen (Erhaltung der b
die Bestellung, nicht a
nicht unbedingt bewahren kann. beide ) und tun es schnell . (Mit if x in a
als Bedingung im Listenverständnis würde ebenfalls funktionieren und die Notwendigkeit vermeiden, die _auxset
aber leider wäre es für Listen von beträchtlicher Länge sehr viel langsamer).
Wenn Sie möchten, dass das Ergebnis sortiert wird, anstatt die Reihenfolge der beiden Listen beizubehalten, wäre eine noch sauberere Methode:
c = sorted(set(a).intersection(b))
Hier ist ein Python 2 / Python 3 Code, der Zeitinformationen für listen- und mengenbasierte Methoden zum Auffinden der Schnittmenge zweier Listen erzeugt.
Die reinen Listenverstehensalgorithmen sind O(n^2), da in
auf einer Liste ist eine lineare Suche. Die mengenbasierten Algorithmen sind O(n), da die Suche nach Mengen O(1) und die Erstellung von Mengen O(n) ist (und die Umwandlung einer Menge in eine Liste ebenfalls O(n) ist). Für ausreichend große n die mengenbasierten Algorithmen sind schneller, aber für kleine n die Gemeinkosten für die Erstellung der Menge(n) machen sie langsamer als die reinen Listenkomp-Algorithmen.
#!/usr/bin/env python
''' Time list- vs set-based list intersection
See http://stackoverflow.com/q/3697432/4014959
Written by PM 2Ring 2015.10.16
'''
from __future__ import print_function, division
from timeit import Timer
setup = 'from __main__ import a, b'
cmd_lista = '[u for u in a if u in b]'
cmd_listb = '[u for u in b if u in a]'
cmd_lcsa = 'sa=set(a);[u for u in b if u in sa]'
cmd_seta = 'list(set(a).intersection(b))'
cmd_setb = 'list(set(b).intersection(a))'
reps = 3
loops = 50000
def do_timing(heading, cmd, setup):
t = Timer(cmd, setup)
r = t.repeat(reps, loops)
r.sort()
print(heading, r)
return r[0]
m = 10
nums = list(range(6 * m))
for n in range(1, m + 1):
a = nums[:6*n:2]
b = nums[:6*n:3]
print('\nn =', n, len(a), len(b))
#print('\nn = %d\n%s %d\n%s %d' % (n, a, len(a), b, len(b)))
la = do_timing('lista', cmd_lista, setup)
lb = do_timing('listb', cmd_listb, setup)
lc = do_timing('lcsa ', cmd_lcsa, setup)
sa = do_timing('seta ', cmd_seta, setup)
sb = do_timing('setb ', cmd_setb, setup)
print(la/sa, lb/sa, lc/sa, la/sb, lb/sb, lc/sb)
Ausgabe
n = 1 3 2
lista [0.082171916961669922, 0.082588911056518555, 0.0898590087890625]
listb [0.069530963897705078, 0.070394992828369141, 0.075379848480224609]
lcsa [0.11858987808227539, 0.1188349723815918, 0.12825107574462891]
seta [0.26900982856750488, 0.26902294158935547, 0.27298116683959961]
setb [0.27218389511108398, 0.27459001541137695, 0.34307217597961426]
0.305460649521 0.258469975867 0.440838458259 0.301898526833 0.255455833892 0.435697630214
n = 2 6 4
lista [0.15915989875793457, 0.16000485420227051, 0.16551494598388672]
listb [0.13000702857971191, 0.13060092926025391, 0.13543915748596191]
lcsa [0.18650484085083008, 0.18742108345031738, 0.19513416290283203]
seta [0.33592700958251953, 0.34001994132995605, 0.34146714210510254]
setb [0.29436492919921875, 0.2953648567199707, 0.30039691925048828]
0.473793098554 0.387009751735 0.555194537893 0.540689066428 0.441652573672 0.633583767462
n = 3 9 6
lista [0.27657914161682129, 0.28098297119140625, 0.28311991691589355]
listb [0.21585917472839355, 0.21679902076721191, 0.22272896766662598]
lcsa [0.22559309005737305, 0.2271728515625, 0.2323150634765625]
seta [0.36382699012756348, 0.36453008651733398, 0.36750602722167969]
setb [0.34979605674743652, 0.35533690452575684, 0.36164689064025879]
0.760194128313 0.59330170819 0.62005595016 0.790686848184 0.61710008036 0.644927481902
n = 4 12 8
lista [0.39616990089416504, 0.39746403694152832, 0.41129183769226074]
listb [0.33485794067382812, 0.33914685249328613, 0.37850618362426758]
lcsa [0.27405810356140137, 0.2745978832244873, 0.28249192237854004]
seta [0.39211201667785645, 0.39234519004821777, 0.39317893981933594]
setb [0.36988520622253418, 0.37011313438415527, 0.37571001052856445]
1.01034878821 0.85398540833 0.698928091731 1.07106176249 0.905302334456 0.740927452493
n = 5 15 10
lista [0.56792402267456055, 0.57422614097595215, 0.57740211486816406]
listb [0.47309303283691406, 0.47619009017944336, 0.47628307342529297]
lcsa [0.32805585861206055, 0.32813096046447754, 0.3349759578704834]
seta [0.40036201477050781, 0.40322518348693848, 0.40548801422119141]
setb [0.39103078842163086, 0.39722800254821777, 0.43811702728271484]
1.41852623806 1.18166313332 0.819398061028 1.45237674242 1.20986133789 0.838951479847
n = 6 18 12
lista [0.77897095680236816, 0.78187918663024902, 0.78467702865600586]
listb [0.629547119140625, 0.63210701942443848, 0.63321495056152344]
lcsa [0.36563992500305176, 0.36638498306274414, 0.38175487518310547]
seta [0.46695613861083984, 0.46992206573486328, 0.47583580017089844]
setb [0.47616910934448242, 0.47661614418029785, 0.4850609302520752]
1.66818870637 1.34819326075 0.783028414812 1.63591241329 1.32210827369 0.767878297495
n = 7 21 14
lista [0.9703209400177002, 0.9734041690826416, 1.0182771682739258]
listb [0.82394003868103027, 0.82625699043273926, 0.82796716690063477]
lcsa [0.40975093841552734, 0.41210508346557617, 0.42286920547485352]
seta [0.5086359977722168, 0.50968098640441895, 0.51014018058776855]
setb [0.48688101768493652, 0.4879908561706543, 0.49204087257385254]
1.90769222837 1.61990115188 0.805587768483 1.99293236904 1.69228211566 0.841583309951
n = 8 24 16
lista [1.204819917678833, 1.2206029891967773, 1.258256196975708]
listb [1.014998197555542, 1.0206191539764404, 1.0343101024627686]
lcsa [0.50966787338256836, 0.51018595695495605, 0.51319599151611328]
seta [0.50310111045837402, 0.50556015968322754, 0.51335406303405762]
setb [0.51472997665405273, 0.51948785781860352, 0.52113485336303711]
2.39478683834 2.01748351664 1.01305257092 2.34068341135 1.97190418975 0.990165516871
n = 9 27 18
lista [1.511646032333374, 1.5133969783782959, 1.5639569759368896]
listb [1.2461750507354736, 1.254518985748291, 1.2613379955291748]
lcsa [0.5565330982208252, 0.56119203567504883, 0.56451296806335449]
seta [0.5966339111328125, 0.60275578498840332, 0.64791703224182129]
setb [0.54694414138793945, 0.5508568286895752, 0.55375313758850098]
2.53362406013 2.08867620074 0.932788243907 2.76380331728 2.27843203069 1.01753187594
n = 10 30 20
lista [1.7777848243713379, 2.1453688144683838, 2.4085969924926758]
listb [1.5070111751556396, 1.5202279090881348, 1.5779800415039062]
lcsa [0.5954139232635498, 0.59703707695007324, 0.60746097564697266]
seta [0.61563014984130859, 0.62125110626220703, 0.62354087829589844]
setb [0.56723213195800781, 0.57257509231567383, 0.57460403442382812]
2.88774814689 2.44791645689 0.967161734066 3.13413984189 2.6567803378 1.04968299523
Erstellt auf einem 2 GHz Single-Core-Rechner mit 2 GB RAM, auf dem Python 2.6.6 auf einem Debian-Linux läuft (mit Firefox im Hintergrund).
Diese Zahlen sind nur ein grober Anhaltspunkt, da die tatsächlichen Geschwindigkeiten der verschiedenen Algorithmen durch den Anteil der Elemente, die in beiden Quelllisten enthalten sind, unterschiedlich beeinflusst werden.
CodeJaeger ist eine Gemeinschaft für Programmierer, die täglich Hilfe erhalten..
Wir haben viele Inhalte, und Sie können auch Ihre eigenen Fragen stellen oder die Fragen anderer Leute lösen.