Ich habe versucht, meine eigene Frage zu beantworten Beispiele für die Verwendung der PolyKinds-Erweiterung in GHC und kam auf ein konkreteres Problem. Ich versuche, eine Warteschlange zu modellieren, die aus zwei Listen besteht, der Kopf-Liste, in der die dequeue
Elemente entnimmt, und die Tail-Liste, in der die enqueue
setzt sie. Um dies interessant zu machen, habe ich beschlossen, eine Einschränkung hinzuzufügen, dass die Endliste nicht länger als die Hauptliste sein darf.
Es scheint, dass enqueue
muss verschiedene Typen zurückgeben, wenn die Warteschlange ausgeglichen werden soll oder nicht. Ist es überhaupt möglich, den richtigen Typ für die enqueue
Funktion mit dieser Einschränkung?
Der Code, den ich derzeit habe, ist hier:
{-#LANGUAGE MultiParamTypeClasses, FlexibleInstances,
UndecidableInstances, TypeFamilies, PolyKinds, GADTs,
RankNTypes#-}
-- Queue consist of a head and tail lists with the invariant that the
-- tail list should never grow longer than the head list.
-- Type for representing the invariant of the queue
data MyConstraint = Constraint Nat Nat
type family Valid c :: Bool
type instance Valid (Constraint a b) = GE a b
-- The queue type. Should the constraint be here?
data Queue :: * -> MyConstraint -> * where
Empty :: Queue a (Constraint Zero Zero)
NonEmpty :: Valid (Constraint n m) ~ True =>
LenList a n -> LenList a m -> Queue a (Constraint n m)
instance (Show a) => Show (Queue a c) where
show Empty = "Empty"
show (NonEmpty a b) = "NonEmpty "++quote a ++ " " ++ quote b
quote a = "("++show a++")"
-- Check the head of the queue
peek :: GE m (Succ Zero) ~ True => Queue a (Constraint m n) -> a
peek (NonEmpty (CONS a _) _) = a
-- Add an element to the queue where head is shorter than the tail
push :: (Valid (Constraint m (Succ n))) ~ True =>
a -> Queue a (Constraint m n) -> Queue a (Constraint m (Succ n))
push x (NonEmpty hd as) = NonEmpty hd (CONS x as)
-- Create a single element queue
singleton :: (Valid (Constraint (Succ Zero) Zero)) ~ True =>
a -> Queue a (Constraint (Succ Zero) Zero)
singleton x = NonEmpty (CONS x NIL) NIL
-- Reset the queue by reversing the tail list and appending it to the head list
reset :: (Valid (Constraint (Plus m n) Zero)) ~ True =>
Queue a (Constraint m n) -> Queue a (Constraint (Plus m n) Zero)
reset Empty = Empty
reset (NonEmpty a b) = NonEmpty (cat a b) NIL -- Should have a reverse here
enqueue :: ??
enqueue = -- If the tail is longer than head, `reset` and then `push`, otherwise just `push`
Die Hilfstypenlisten und nats werden im Folgenden definiert.
-- Type Level natural numbers and operations
data Nat = Zero | Succ Nat deriving (Eq,Ord,Show)
type family Plus m n :: Nat
type instance Plus Zero n = n
type instance Plus n Zero = n
type instance Plus (Succ m) n = Succ (Plus m n)
type family GE m n :: Bool
type instance GE (Succ m) Zero = True
type instance GE Zero (Succ m) = False
type instance GE Zero Zero = True
type instance GE (Succ m) (Succ n) = GE m n
type family EQ m n :: Bool
type instance EQ Zero Zero = True
type instance EQ Zero (Succ m) = False
type instance EQ (Succ m) Zero = False
type instance EQ (Succ m) (Succ n) = EQ m n
-- Lists with statically typed lengths
data LenList :: * -> Nat -> * where
NIL :: LenList a Zero
CONS :: a -> LenList a n -> LenList a (Succ n)
instance (Show a) => Show (LenList a c) where
show x = "LenList " ++ (show . toList $ x)
-- Convert to ordinary list
toList :: forall a. forall m. LenList a m -> [a]
toList NIL = []
toList (CONS a b) = a:toList b
-- Concatenate two lists
cat :: LenList a n -> LenList a m -> LenList a (Plus n m)
cat NIL a = a
cat a NIL = a
cat (CONS a b) cs = CONS a (cat b cs)