386 Stimmen

Wie man eine Liste möglicher Wörter aus einer Buchstabenmatrix findet [Boggle Solver]

In letzter Zeit habe ich auf meinem iPhone ein Spiel namens Scramble gespielt. Einige von euch kennen dieses Spiel vielleicht als Boggle. Wenn das Spiel beginnt, erhält man im Wesentlichen eine Matrix von Buchstaben, etwa so:

F X I E
A M L O
E W B X
A S T U

Das Ziel des Spiels ist es, so viele Wörter wie möglich zu finden, die durch Aneinanderreihen von Buchstaben gebildet werden können. Sie können mit einem beliebigen Buchstaben beginnen, und alle Buchstaben, die ihn umgeben, sind Freiwild, und sobald Sie zum nächsten Buchstaben weitergehen, sind alle Buchstaben, die diesen Buchstaben umgeben, Freiwild, mit Ausnahme der bereits verwendeten Buchstaben . In dem obigen Raster könnte ich zum Beispiel die folgenden Wörter finden LOB , TUX , SEA , FAME , usw. Die Wörter müssen aus mindestens 3 Zeichen bestehen und dürfen nicht mehr als NxN Zeichen haben, was in diesem Spiel 16 Zeichen sind, aber in einigen Implementierungen variieren können. Obwohl dieses Spiel Spaß macht und süchtig macht, bin ich offensichtlich nicht sehr gut darin und wollte ein wenig schummeln, indem ich ein Programm erstellte, das mir die bestmöglichen Wörter liefert (je länger das Wort ist, desto mehr Punkte erhält man).

Sample Boggle
(Quelle: <a href="http://www.boggled.org/sample.gif" rel="noreferrer">verblüfft.org </a>)

Leider kenne ich mich mit Algorithmen, ihrer Effizienz usw. nicht besonders gut aus. Mein erster Versuch verwendet ein Wörterbuch wie zum Beispiel dieses (~2.3MB) und führt eine lineare Suche durch, um Kombinationen mit Wörterbucheinträgen zu finden. Dies dauert eine よほど lange Zeit, um die möglichen Wörter zu finden, und da man nur 2 Minuten pro Runde hat, ist das einfach nicht ausreichend.

Ich bin gespannt, ob Stackoverflowers effizientere Lösungen anbieten können. Ich bin vor allem auf der Suche nach Lösungen mit den Big 3 Ps: Python, PHP und Perl, obwohl alles mit Java oder C++ auch cool ist, da Geschwindigkeit entscheidend ist.

AKTUELLE LÖSUNGEN :

  • Adam Rosenfield, Python, ~20s
  • John Fouhy, Python, ~3s
  • Kent Fredric, Perl, ~1s
  • Darius Bacon, Python, ~1s
  • rvarcher, VB.NET, ~1s
  • Paolo Bergantino, PHP (Live-Link) , ~5s (~2s lokal)

1 Stimmen

Eine einfache Lösung ist die Klasse BoggleFinder aima.cs.berkeley.edu/python/search.html

0 Stimmen

Das macht doch keinen Spaß, oder? :)

18 Stimmen

Bitte übersetzen Sie dies beibehalten die gleichen HTML-Tags, wenn diese vorhanden sind von en nach de: Featureanfrage MEHR RÄTSEL

148voto

Darius Bacon Punkte 14645

Meine Antwort funktioniert wie die anderen hier, aber ich werde sie posten, weil sie etwas schneller aussieht als die anderen Python-Lösungen, da das Einrichten des Wörterbuchs schneller geht. (Ich habe das gegen John Fouhys Lösung überprüft.) Nach dem Einrichten ist die Lösungszeit vernachlässigbar.

grid = "fxie amlo ewbx astu".split()
nrows, ncols = len(grid), len(grid[0])

# Ein Wörterbuchwort, das eine Lösung sein könnte, muss nur die Buchstaben des Rasters verwenden und eine Länge >= 3 haben. (Mit einer Case-insensitive-Übereinstimmung.)
import re
alphabet = ''.join(set(''.join(grid)))
bogglable = re.compile('[' + alphabet + ']{3,}$', re.I).match

words = set(word.rstrip('\n') for word in open('words') if bogglable(word))
prefixes = set(word[:i] for word in words
               for i in range(2, len(word)+1))

def solve():
    for y, row in enumerate(grid):
        for x, letter in enumerate(row):
            for result in extending(letter, ((x, y),)):
                yield result

def extending(prefix, path):
    if prefix in words:
        yield (prefix, path)
    for (nx, ny) in neighbors(path[-1]):
        if (nx, ny) not in path:
            prefix1 = prefix + grid[ny][nx]
            if prefix1 in prefixes:
                for result in extending(prefix1, path + ((nx, ny),)):
                    yield result

def neighbors((x, y)):
    for nx in range(max(0, x-1), min(x+2, ncols)):
        for ny in range(max(0, y-1), min(y+2, nrows)):
            yield (nx, ny)

Beispiel Verwendung:

# Drucken Sie ein maximal langes Wort und seinen Pfad:
print max(solve(), key=lambda (word, path): len(word))

Bearbeiten: Filtern Sie Wörter heraus, die weniger als 3 Buchstaben lang sind.

Bearbeiten 2: Ich war neugierig, warum Kent Fredrics Perl-Lösung schneller war. Es stellt sich heraus, dass er die reguläre Ausdruckübereinstimmung anstelle eines Zeichensatzes von Zeichen verwendet. Wenn man dasselbe in Python macht, verdoppelt sich die Geschwindigkeit etwa.

0 Stimmen

Das Programm gibt mir nur 1 Wort. Wie kommt das?

0 Stimmen

Ich wollte nicht in der Ausgabe ertrinken. Siehe den Kommentar unten.

6 Stimmen

Oder alle Wörter ohne Pfade erhalten: drucke ' '.join(sorted(set(wort für (wort, pfad) in lösen())))

116voto

Adam Rosenfield Punkte 373807

Die schnellste Lösung, die Sie wahrscheinlich erhalten werden, besteht wahrscheinlich darin, Ihr Wörterbuch in einem Trie zu speichern. Erstellen Sie dann eine Warteschlange von Triplets (x, y, s), wobei jedes Element in der Warteschlange einem Präfix s eines Wortes entspricht, das im Raster buchstabiert werden kann und an der Position (x, y) endet. Initialisieren Sie die Warteschlange mit N x N Elementen (wobei N die Größe Ihres Rasters ist), ein Element für jedes Quadrat im Raster. Dann verläuft der Algorithmus wie folgt:

Solange die Warteschlange nicht leer ist:
  Nehmen Sie ein Tripel (x, y, s) aus der Warteschlange heraus
  Für jedes Quadrat (x', y') mit Buchstaben c, die an (x, y) angrenzen:
    Wenn s+c ein Wort ist, geben Sie s+c aus
    Wenn s+c ein Präfix eines Wortes ist, fügen Sie (x', y', s+c) in die Warteschlange ein

Wenn Sie Ihr Wörterbuch in einem Trie speichern, kann getestet werden, ob s+c ein Wort oder ein Präfix eines Wortes ist, in konstanter Zeit durchgeführt werden (vorausgesetzt, Sie speichern auch einige zusätzliche Metadaten in jedem Warteschlangenelement, wie beispielsweise einen Zeiger auf den aktuellen Knoten im Trie), daher beträgt die Laufzeit dieses Algorithmus O(Anzahl der buchstabierbaren Wörter).

[Edit] Hier ist eine Implementierung in Python, die ich gerade geschrieben habe:

#!/usr/bin/python

class TrieNode:
    def __init__(self, parent, value):
        self.parent = parent
        self.children = [None] * 26
        self.isWord = False
        if parent is not None:
            parent.children[ord(value) - 97] = self

def MakeTrie(dictfile):
    dict = open(dictfile)
    root = TrieNode(None, '')
    for word in dict:
        curNode = root
        for letter in word.lower():
            if 97 <= ord(letter) < 123:
                nextNode = curNode.children[ord(letter) - 97]
                if nextNode is None:
                    nextNode = TrieNode(curNode, letter)
                curNode = nextNode
        curNode.isWord = True
    return root

def BoggleWords(grid, dict):
    rows = len(grid)
    cols = len(grid[0])
    queue = []
    words = []
    for y in range(cols):
        for x in range(rows):
            c = grid[y][x]
            node = dict.children[ord(c) - 97]
            if node is not None:
                queue.append((x, y, c, node))
    while queue:
        x, y, s, node = queue[0]
        del queue[0]
        for dx, dy in ((1, 0), (1, -1), (0, -1), (-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1)):
            x2, y2 = x + dx, y + dy
            if 0 <= x2 < cols and 0 <= y2 < rows:
                s2 = s + grid[y2][x2]
                node2 = node.children[ord(grid[y2][x2]) - 97]
                if node2 is not None:
                    if node2.isWord:
                        words.append(s2)
                    queue.append((x2, y2, s2, node2))

    return words

Beispielverwendung:

d = MakeTrie('/usr/share/dict/words')
print(BoggleWords(['fxie','amlo','ewbx','astu'], d))

Ausgabe:

['fa', 'xi', 'ie', 'io', 'el', 'am', 'ax', 'ae', 'aw', 'mi', 'ma', 'me', 'lo', 'li', 'oe', 'ox', 'em', 'ea', 'ea', 'es', 'wa', 'we', 'wa', 'bo', 'bu', 'as', 'aw', 'ae', 'st', 'se', 'sa', 'tu', 'ut', 'fam', 'fae', 'imi', 'eli', 'elm', 'elb', 'ami', 'ama', 'ame', 'aes', 'awl', 'awa', 'awe', 'awa', 'mix', 'mim', 'mil', 'mam', 'max', 'mae', 'maw', 'mew', 'mem', 'mes', 'lob', 'lox', 'lei', 'leo', 'lie', 'lim', 'oil', 'olm', 'ewe', 'eme', 'wax', 'waf', 'wae', 'waw', 'wem', 'wea', 'wea', 'was', 'waw', 'wae', 'bob', 'blo', 'bub', 'but', 'ast', 'ase', 'asa', 'awl', 'awa', 'awe', 'awa', 'aes', 'swa', 'swa', 'sew', 'sea', 'sea', 'saw', 'tux', 'tub', 'tut', 'twa', 'twa', 'tst', 'utu', 'fama', 'fame', 'ixil', 'imam', 'amli', 'amil', 'ambo', 'axil', 'axle', 'mimi', 'mima', 'mime', 'milo', 'mile', 'mewl', 'mese', 'mesa', 'lolo', 'lobo', 'lima', 'lime', 'limb', 'lile', 'oime', 'oleo', 'olio', 'oboe', 'obol', 'emim', 'emil', 'east', 'ease', 'wame', 'wawa', 'wawa', 'weam', 'west', 'wese', 'wast', 'wase', 'wawa', 'wawa', 'boil', 'bolo', 'bole', 'bobo', 'blob', 'bleo', 'bubo', 'asem', 'stub', 'stut', 'swam', 'semi', 'seme', 'seam', 'seax', 'sasa', 'sawt', 'tutu', 'tuts', 'twae', 'twas', 'twae', 'ilima', 'amble', 'axile', 'awest', 'mamie', 'mambo', 'maxim', 'mease', 'mesem', 'limax', 'limes', 'limbo', 'limbu', 'obole', 'emesa', 'embox', 'awest', 'swami', 'famble', 'mimble', 'maxima', 'embolo', 'embole', 'wamble', 'semese', 'semble', 'sawbwa', 'sawbwa']

Hinweis: Dieses Programm gibt keine 1-Buchstaben-Wörter aus und filtert überhaupt nicht nach Wortlänge. Das Hinzufügen und Sortieren von Duplikaten ist nach Abschluss des Algorithmus leicht zu erledigen, aber für das Problem nicht wirklich relevant. Es gibt auch einige Wörter mehrmals aus, wenn sie auf verschiedene Weisen buchstabiert werden können. Wenn ein bestimmtes Wort auf viele verschiedene Arten buchstabiert werden kann (schlimmster Fall: jedes Zeichen im Raster ist dasselbe (z.B. 'A') und ein Wort wie 'aaaaaaaaaa' in Ihrem Wörterbuch ist), wird die Laufzeit schrecklich exponentiell. Das Filtern von Duplikaten und Sortieren ist einfach nach Abschluss des Algorithmus möglich.

14 Stimmen

Ooo. Ich bin froh, dass jemand in die Bresche gesprungen ist. Obwohl das funktioniert, "merkt" es sich nicht den Buchstaben, den es bereits verwendet hat, und bringt Wörter, die erfordern würden, den gleichen Buchstaben zweimal zu verwenden, was nicht erlaubt ist. Da ich ein Idiot bin, wie könnte ich das beheben?

3 Stimmen

Wahr, es erinnert sich nicht daran, welche Buchstaben besucht wurden, aber das wurde nicht in Ihrer Spezifikation angegeben =). Um das zu beheben, müssten Sie zu jedem Warteschlangendatensatz eine Liste aller besuchten Standorte hinzufügen und dann diese Liste überprüfen, bevor Sie den nächsten Buchstaben hinzufügen.

0 Stimmen

Nein, innerhalb von BoggleWords(). Anstatt ein Quadrupel (x, y, s, n) zu speichern, würde man ein Quintupel (x, y, s, n, l) speichern, wobei l die Liste der besuchten (x, y)-Koordinaten bisher ist. Dann überprüfen Sie jedes (x2, y2) gegen l und akzeptieren es nur, wenn es nicht in l ist. Dann fügen Sie es der neuen l hinzu.

39voto

Kent Fredric Punkte 55042

Um die Geschwindigkeit des Wörterbuchs zu erhöhen, gibt es eine allgemeine Umwandlung/einen Prozess, mit dem Sie die Wörterbuchvergleiche im Voraus stark reduzieren können.

Da das obige Raster nur 16 Zeichen enthält, von denen einige doppelt vorkommen, können Sie die Gesamtzahl der Schlüssel in Ihrem Wörterbuch erheblich reduzieren, indem Sie einfach Einträge mit unerreichbaren Zeichen herausfiltern.

Ich dachte, dies sei die offensichtliche Optimierung, aber da es niemand getan hat, erwähne ich es.

So konnte ich allein beim Eingabedurchlauf von einem Wörterbuch mit 200.000 Schlüsseln auf nur 2.000 Schlüssel reduzieren. Dadurch wird zumindest der Speicher-Overhead reduziert, und das wird sich sicher irgendwo in einer Geschwindigkeitssteigerung niederschlagen, da der Speicher nicht unendlich schnell ist.

Perl-Implementierung

Meine Implementierung ist etwas kopflastig, weil ich Wert darauf gelegt habe, den genauen Pfad jeder extrahierten Zeichenkette zu kennen, nicht nur die darin enthaltene Gültigkeit.

Ich habe auch ein paar Anpassungen, die es theoretisch erlauben würden, ein Gitter mit Löchern darin zu verwenden, und Gitter mit unterschiedlich großen Linien (vorausgesetzt, man bekommt die Eingabe richtig hin und es passt irgendwie zusammen).

Der Frühfilter ist der bei weitem am meisten bedeutsam Engpass in meiner Anwendung, wie bereits vermutet, wird durch das Auskommentieren dieser Zeile von 1,5s auf 7,5s verlängert.

Bei der Ausführung scheint es zu glauben, dass alle einzelnen Ziffern für sich genommen gültige Wörter sind, aber ich bin mir ziemlich sicher, dass das daran liegt, wie die Wörterbuchdatei funktioniert.

Es ist ein bisschen aufgebläht, aber wenigstens verwende ich es wieder. Baum::Trie von cpan

Einiges davon wurde teilweise von den bestehenden Implementierungen inspiriert, einiges hatte ich bereits im Kopf.

Konstruktive Kritik und Verbesserungsvorschläge willkommen ( /me notes he never CPAN nach einem Boggle-Löser durchsucht aber es hat mehr Spaß gemacht, das auszuarbeiten)

aktualisiert für neue Kriterien

#!/usr/bin/perl 

use strict;
use warnings;

{

  # this package manages a given path through the grid.
  # Its an array of matrix-nodes in-order with
  # Convenience functions for pretty-printing the paths
  # and for extending paths as new paths.

  # Usage:
  # my $p = Prefix->new(path=>[ $startnode ]);
  # my $c = $p->child( $extensionNode );
  # print $c->current_word ;

  package Prefix;
  use Moose;

  has path => (
      isa     => 'ArrayRef[MatrixNode]',
      is      => 'rw',
      default => sub { [] },
  );
  has current_word => (
      isa        => 'Str',
      is         => 'rw',
      lazy_build => 1,
  );

  # Create a clone of this object
  # with a longer path

  # $o->child( $successive-node-on-graph );

  sub child {
      my $self    = shift;
      my $newNode = shift;
      my $f       = Prefix->new();

      # Have to do this manually or other recorded paths get modified
      push @{ $f->{path} }, @{ $self->{path} }, $newNode;
      return $f;
  }

  # Traverses $o->path left-to-right to get the string it represents.

  sub _build_current_word {
      my $self = shift;
      return join q{}, map { $_->{value} } @{ $self->{path} };
  }

  # Returns  the rightmost node on this path

  sub tail {
      my $self = shift;
      return $self->{path}->[-1];
  }

  # pretty-format $o->path

  sub pp_path {
      my $self = shift;
      my @path =
        map { '[' . $_->{x_position} . ',' . $_->{y_position} . ']' }
        @{ $self->{path} };
      return "[" . join( ",", @path ) . "]";
  }

  # pretty-format $o
  sub pp {
      my $self = shift;
      return $self->current_word . ' => ' . $self->pp_path;
  }

  __PACKAGE__->meta->make_immutable;
}

{

  # Basic package for tracking node data
  # without having to look on the grid.
  # I could have just used an array or a hash, but that got ugly.

# Once the matrix is up and running it doesn't really care so much about rows/columns,
# Its just a sea of points and each point has adjacent points.
# Relative positioning is only really useful to map it back to userspace

  package MatrixNode;
  use Moose;

  has x_position => ( isa => 'Int', is => 'rw', required => 1 );
  has y_position => ( isa => 'Int', is => 'rw', required => 1 );
  has value      => ( isa => 'Str', is => 'rw', required => 1 );
  has siblings   => (
      isa     => 'ArrayRef[MatrixNode]',
      is      => 'rw',
      default => sub { [] }
  );

# Its not implicitly uni-directional joins. It would be more effient in therory
# to make the link go both ways at the same time, but thats too hard to program around.
# and besides, this isn't slow enough to bother caring about.

  sub add_sibling {
      my $self    = shift;
      my $sibling = shift;
      push @{ $self->siblings }, $sibling;
  }

  # Convenience method to derive a path starting at this node

  sub to_path {
      my $self = shift;
      return Prefix->new( path => [$self] );
  }
  __PACKAGE__->meta->make_immutable;

}

{

  package Matrix;
  use Moose;

  has rows => (
      isa     => 'ArrayRef',
      is      => 'rw',
      default => sub { [] },
  );

  has regex => (
      isa        => 'Regexp',
      is         => 'rw',
      lazy_build => 1,
  );

  has cells => (
      isa        => 'ArrayRef',
      is         => 'rw',
      lazy_build => 1,
  );

  sub add_row {
      my $self = shift;
      push @{ $self->rows }, [@_];
  }

  # Most of these functions from here down are just builder functions,
  # or utilities to help build things.
  # Some just broken out to make it easier for me to process.
  # All thats really useful is add_row
  # The rest will generally be computed, stored, and ready to go
  # from ->cells by the time either ->cells or ->regex are called.

  # traverse all cells and make a regex that covers them.
  sub _build_regex {
      my $self  = shift;
      my $chars = q{};
      for my $cell ( @{ $self->cells } ) {
          $chars .= $cell->value();
      }
      $chars = "[^$chars]";
      return qr/$chars/i;
  }

  # convert a plain cell ( ie: [x][y] = 0 )
  # to an intelligent cell ie: [x][y] = object( x, y )
  # we only really keep them in this format temporarily
  # so we can go through and tie in neighbouring information.
  # after the neigbouring is done, the grid should be considered inoperative.

  sub _convert {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      my $v    = $self->_read( $x, $y );
      my $n    = MatrixNode->new(
          x_position => $x,
          y_position => $y,
          value      => $v,
      );
      $self->_write( $x, $y, $n );
      return $n;
  }

# go through the rows/collums presently available and freeze them into objects.

  sub _build_cells {
      my $self = shift;
      my @out  = ();
      my @rows = @{ $self->{rows} };
      for my $x ( 0 .. $#rows ) {
          next unless defined $self->{rows}->[$x];
          my @col = @{ $self->{rows}->[$x] };
          for my $y ( 0 .. $#col ) {
              next unless defined $self->{rows}->[$x]->[$y];
              push @out, $self->_convert( $x, $y );
          }
      }
      for my $c (@out) {
          for my $n ( $self->_neighbours( $c->x_position, $c->y_position ) ) {
              $c->add_sibling( $self->{rows}->[ $n->[0] ]->[ $n->[1] ] );
          }
      }
      return \@out;
  }

  # given x,y , return array of points that refer to valid neighbours.
  sub _neighbours {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      my @out  = ();
      for my $sx ( -1, 0, 1 ) {
          next if $sx + $x < 0;
          next if not defined $self->{rows}->[ $sx + $x ];
          for my $sy ( -1, 0, 1 ) {
              next if $sx == 0 && $sy == 0;
              next if $sy + $y < 0;
              next if not defined $self->{rows}->[ $sx + $x ]->[ $sy + $y ];
              push @out, [ $sx + $x, $sy + $y ];
          }
      }
      return @out;
  }

  sub _has_row {
      my $self = shift;
      my $x    = shift;
      return defined $self->{rows}->[$x];
  }

  sub _has_cell {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      return defined $self->{rows}->[$x]->[$y];
  }

  sub _read {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      return $self->{rows}->[$x]->[$y];
  }

  sub _write {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      my $v    = shift;
      $self->{rows}->[$x]->[$y] = $v;
      return $v;
  }

  __PACKAGE__->meta->make_immutable;
}

use Tree::Trie;

sub readDict {
  my $fn = shift;
  my $re = shift;
  my $d  = Tree::Trie->new();

  # Dictionary Loading
  open my $fh, '<', $fn;
  while ( my $line = <$fh> ) {
      chomp($line);

 # Commenting the next line makes it go from 1.5 seconds to 7.5 seconds. EPIC.
      next if $line =~ $re;    # Early Filter
      $d->add( uc($line) );
  }
  return $d;
}

sub traverseGraph {
  my $d     = shift;
  my $m     = shift;
  my $min   = shift;
  my $max   = shift;
  my @words = ();

  # Inject all grid nodes into the processing queue.

  my @queue =
    grep { $d->lookup( $_->current_word ) }
    map  { $_->to_path } @{ $m->cells };

  while (@queue) {
      my $item = shift @queue;

      # put the dictionary into "exact match" mode.

      $d->deepsearch('exact');

      my $cword = $item->current_word;
      my $l     = length($cword);

      if ( $l >= $min && $d->lookup($cword) ) {
          push @words,
            $item;    # push current path into "words" if it exactly matches.
      }
      next if $l > $max;

      # put the dictionary into "is-a-prefix" mode.
      $d->deepsearch('boolean');

    siblingloop: foreach my $sibling ( @{ $item->tail->siblings } ) {
          foreach my $visited ( @{ $item->{path} } ) {
              next siblingloop if $sibling == $visited;
          }

          # given path y , iterate for all its end points
          my $subpath = $item->child($sibling);

          # create a new path for each end-point
          if ( $d->lookup( $subpath->current_word ) ) {

             # if the new path is a prefix, add it to the bottom of the queue.
              push @queue, $subpath;
          }
      }
  }
  return \@words;
}

sub setup_predetermined { 
  my $m = shift; 
  my $gameNo = shift;
  if( $gameNo == 0 ){
      $m->add_row(qw( F X I E ));
      $m->add_row(qw( A M L O ));
      $m->add_row(qw( E W B X ));
      $m->add_row(qw( A S T U ));
      return $m;
  }
  if( $gameNo == 1 ){
      $m->add_row(qw( D G H I ));
      $m->add_row(qw( K L P S ));
      $m->add_row(qw( Y E U T ));
      $m->add_row(qw( E O R N ));
      return $m;
  }
}
sub setup_random { 
  my $m = shift; 
  my $seed = shift;
  srand $seed;
  my @letters = 'A' .. 'Z' ; 
  for( 1 .. 4 ){ 
      my @r = ();
      for( 1 .. 4 ){
          push @r , $letters[int(rand(25))];
      }
      $m->add_row( @r );
  }
}

# Here is where the real work starts.

my $m = Matrix->new();
setup_predetermined( $m, 0 );
#setup_random( $m, 5 );

my $d = readDict( 'dict.txt', $m->regex );
my $c = scalar @{ $m->cells };    # get the max, as per spec

print join ",\n", map { $_->pp } @{
  traverseGraph( $d, $m, 3, $c ) ;
};

Arch/Ausführungsinformationen zum Vergleich:

model name      : Intel(R) Core(TM)2 Duo CPU     T9300  @ 2.50GHz
cache size      : 6144 KB
Memory usage summary: heap total: 77057577, heap peak: 11446200, stack peak: 26448
       total calls   total memory   failed calls
 malloc|     947212       68763684              0
realloc|      11191        1045641              0  (nomove:9063, dec:4731, free:0)
 calloc|     121001        7248252              0
   free|     973159       65854762

Histogram for block sizes:
  0-15         392633  36% ==================================================
 16-31          43530   4% =====
 32-47          50048   4% ======
 48-63          70701   6% =========
 64-79          18831   1% ==
 80-95          19271   1% ==
 96-111        238398  22% ==============================
112-127          3007  <1% 
128-143        236727  21% ==============================

Weiteres Gemurmel über die Regex-Optimierung

Die Regex-Optimierung, die ich verwende, ist für Wörterbücher mit mehreren Auflösungen unbrauchbar, und für eine Mehrfachauflösung brauchen Sie ein vollständiges Wörterbuch, nicht ein vorgefertigtes.

Aber für einmalige Lösungen ist es wirklich schnell (Perl-Regex sind in C! :) ).

Hier sind einige unterschiedliche Code-Ergänzungen:

sub readDict_nofilter {
  my $fn = shift;
  my $re = shift;
  my $d  = Tree::Trie->new();

  # Dictionary Loading
  open my $fh, '<', $fn;
  while ( my $line = <$fh> ) {
      chomp($line);
      $d->add( uc($line) );
  }
  return $d;
}

sub benchmark_io { 
  use Benchmark qw( cmpthese :hireswallclock );
   # generate a random 16 character string 
   # to simulate there being an input grid. 
  my $regexen = sub { 
      my @letters = 'A' .. 'Z' ; 
      my @lo = ();
      for( 1..16 ){ 
          push @lo , $_ ; 
      }
      my $c  = join '', @lo;
      $c = "[^$c]";
      return qr/$c/i;
  };
  cmpthese( 200 , { 
      filtered => sub { 
          readDict('dict.txt', $regexen->() );
      }, 
      unfiltered => sub {
          readDict_nofilter('dict.txt');
      }
  });
}

           s/iter unfiltered   filtered
unfiltered   8.16         --       -94%
filtered    0.464      1658%         --

ps: 8,16 * 200 = 27 Minuten.

2 Stimmen

Ich weiß, dass ich im Optimierungsclub versage, aber ich hatte bereits Geschwindigkeitsprobleme, bevor ich zur eigentlichen Arbeit des Codes kam, und die Reduzierung der Eingabezeit von 2s auf 1,2s bedeutet mir viel.

0 Stimmen

/me bemerkte es jetzt seltsam, dass es weniger Zeit in Anspruch nahm, um Regex anzuwenden und Einträge zu überspringen, als es dauerte, Schlüssel zu einem Hash hinzuzufügen.

0 Stimmen

Schön, eine Perl-Implementierung! Ich werde sie jetzt ausführen.

34voto

John Fouhy Punkte 39035

Du könntest das Problem in zwei Teile aufteilen:

  1. Einige Art von Suchalgorithmus, der mögliche Zeichenfolgen im Gitter aufzählt.
  2. Eine Möglichkeit zu überprüfen, ob eine Zeichenfolge ein gültiges Wort ist.

Idealerweise sollte (2) auch eine Möglichkeit enthalten zu überprüfen, ob eine Zeichenfolge ein Präfix eines gültigen Wortes ist – dadurch kannst du deine Suche optimieren und eine Menge Zeit sparen.

Adams Rosenfields Trie ist eine Lösung für (2). Es ist elegant und wahrscheinlich das, was dein Algorithmus-Spezialist bevorzugen würde, aber mit modernen Sprachen und modernen Computern können wir etwas fauler sein. Außerdem können wir, wie Kent vorschlägt, die Größe unseres Wörterbuchs reduzieren, indem wir Wörter verwerfen, die Buchstaben enthalten, die im Gitter nicht vorhanden sind. Hier ist ein bisschen Python:

def make_lookups(grid, fn='dict.txt'):
    # Set von gültigen Zeichen erstellen.
    chars = set()
    for word in grid:
        chars.update(word)

    words = set(x.strip() for x in open(fn) if set(x.strip()) <= chars)
    prefixes = set()
    for w in words:
        for i in range(len(w)+1):
            prefixes.add(w[:i])

    return words, prefixes

Wow; Konstante Zeit für Präfix-Tests. Es dauert nur ein paar Sekunden, um das von dir verlinkte Wörterbuch zu laden, aber nur ein paar :-) (beachte, dass words <= prefixes)

Jetzt, für Teil (1), neige ich dazu, in Begriffen von Graphen zu denken. Also werde ich ein Wörterbuch aufbauen, das ungefähr so aussieht:

graph = { (x, y):set([(x0,y0), (x1,y1), (x2,y2)]), }

dh. graph[(x, y)] ist die Menge der Koordinaten, die du von der Position (x, y) aus erreichen kannst. Ich werde auch einen Dummy-Knoten None hinzufügen, der mit allem verbunden ist.

Das Aufbauen ist ein bisschen umständlich, weil es 8 mögliche Positionen gibt und du Grenzüberprüfungen durchführen musst. Hier ist entsprechend umständlicher Python-Code:

def make_graph(grid):
    root = None
    graph = { root:set() }
    chardict = { root:'' }

    for i, row in enumerate(grid):
        for j, char in enumerate(row):
            chardict[(i, j)] = char
            node = (i, j)
            children = set()
            graph[node] = children
            graph[root].add(node)
            add_children(node, children, grid)

    return graph, chardict

def add_children(node, children, grid):
    x0, y0 = node
    for i in [-1,0,1]:
        x = x0 + i
        if not (0 <= x < len(grid)):
            continue
        for j in [-1,0,1]:
            y = y0 + j
            if not (0 <= y < len(grid[0])) or (i == j == 0):
                continue

            children.add((x,y))

Dieser Code baut auch ein Wörterbuch auf, das (x,y) auf das entsprechende Zeichen abbildet. Dadurch kann ich eine Liste von Positionen in ein Wort umwandeln:

def to_word(chardict, pos_list):
    return ''.join(chardict[x] for x in pos_list)

Zuletzt führen wir eine Tiefensuche durch. Das grundlegende Verfahren ist:

  1. Die Suche erreicht einen bestimmten Knoten.
  2. Überprüfe, ob der bisherige Pfad Teil eines Wortes sein könnte. Wenn nicht, erkunde diesen Zweig nicht weiter.
  3. Überprüfe, ob der bisherige Pfad ein Wort ist. Wenn ja, füge es zur Ergebnisliste hinzu.
  4. Erkunde alle Kinder, die nicht Teil des bisherigen Pfades sind.

Python:

def find_words(graph, chardict, position, prefix, results, words, prefixes):
    """ Argumente:
      graph :: Zuordnung (x,y) zu Menge von erreichbaren Positionen
      chardict :: Zuordnung (x,y) zu Zeichen
      position :: aktuelle Position (x,y) -- entspricht prefix[-1]
      prefix :: Liste von Positionen im aktuellen String
      results :: Menge gefundener Wörter
      words :: Menge gültiger Wörter im Wörterbuch
      prefixes :: Menge gültiger Wörter oder Präfixe davon
    """
    word = to_word(chardict, prefix)

    if word not in prefixes:
        return

    if word in words:
        results.add(word)

    for child in graph[position]:
        if child not in prefix:
            find_words(graph, chardict, child, prefix+[child], results, words, prefixes)

Führe den Code aus:

grid = ['fxie', 'amlo', 'ewbx', 'astu']
g, c = make_graph(grid)
w, p = make_lookups(grid)
res = set()
find_words(g, c, None, [], res, w, p)

und inspiziere res, um die Antworten zu sehen. Hier ist eine Liste der für dein Beispiel gefundenen Wörter, sortiert nach Größe:

 ['a', 'b', 'e', 'f', 'i', 'l', 'm', 'o', 's', 't',
 'u', 'w', 'x', 'ae', 'am', 'as', 'aw', 'ax', 'bo',
 'bu', 'ea', 'el', 'em', 'es', 'fa', 'ie', 'io', 'li',
 'lo', 'ma', 'me', 'mi', 'oe', 'ox', 'sa', 'se', 'st',
 'tu', 'ut', 'wa', 'we', 'xi', 'aes', 'ame', 'ami',
 'ase', 'ast', 'awa', 'awe', 'awl', 'blo', 'but', 'elb',
 'elm', 'fae', 'fam', 'lei', 'lie', 'lim', 'lob', 'lox',
 'mae', 'maw', 'mew', 'mil', 'mix', 'oil', 'olm', 'saw',
 'sea', 'sew', 'swa', 'tub', 'tux', 'twa', 'wae', 'was',
 'wax', 'wem', 'ambo', 'amil', 'amli', 'asem', 'axil',
 'axle', 'bleo', 'boil', 'bole', 'east', 'fame', 'limb',
 'lime', 'mesa', 'mewl', 'mile', 'milo', 'oime', 'sawt',
 'seam', 'seax', 'semi', 'stub', 'swam', 'twae', 'twas',
 'wame', 'wase', 'wast', 'weam', 'west', 'amble', 'awest',
 'axile', 'embox', 'limbo', 'limes', 'swami', 'embole',
 'famble', 'semble', 'wamble']

Der Code benötigt (wortwörtlich) ein paar Sekunden, um das Wörterbuch zu laden, aber der Rest erfolgt auf meinem Computer sofort.

0 Stimmen

Sehr schön! Auch sehr schnell. Ich werde warten, um zu sehen, ob noch jemand zur Stelle tritt, aber deine Antwort sieht bisher gut aus.

0 Stimmen

Ich bin verwirrt, warum "embole" dein einziges 6-Buchstaben-Wort ist, ich habe 10 verschiedene Wörter dafür. Es scheint, dass du einen erneuten Besuch desselben Knotens verbietest, und wie der OP bereits festgestellt hat, ist das fair.

1 Stimmen

Ok, er hat möglicherweise immer noch einen Fehler, da er "FAMBLE", "WAMBLE" und "SEMBLE" verwirft, die keine Zeichen gemeinsam haben.

23voto

gineer Punkte 123

Mein Versuch in Java. Es dauert etwa 2 Sekunden, um die Datei zu lesen und den Trie zu erstellen, und etwa 50 ms, um das Rätsel zu lösen. Ich habe das in der Frage verlinkte Wörterbuch benutzt (es enthält ein paar Wörter, von denen ich nicht wusste, dass es sie im Englischen gibt, wie z.B. fae, ima)

0 [main] INFO gineer.bogglesolver.util.Util  - Reading the dictionary
2234 [main] INFO gineer.bogglesolver.util.Util  - Finish reading the dictionary
2234 [main] INFO gineer.bogglesolver.Solver  - Found: FAM
2234 [main] INFO gineer.bogglesolver.Solver  - Found: FAME
2234 [main] INFO gineer.bogglesolver.Solver  - Found: FAMBLE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: FAE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: IMA
2234 [main] INFO gineer.bogglesolver.Solver  - Found: ELI
2234 [main] INFO gineer.bogglesolver.Solver  - Found: ELM
2234 [main] INFO gineer.bogglesolver.Solver  - Found: ELB
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AXIL
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AXILE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AXLE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMI
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMIL
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMLI
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AME
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMBLE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMBO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWEST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MIX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MIL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MILE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MILO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MAX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MAW
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MEW
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MEWL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MESA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMAX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIME
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMB
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMBO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMBU
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LEI
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LEO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LOB
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LOX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: OIME
2250 [main] INFO gineer.bogglesolver.Solver  - Found: OIL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: OLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: OLM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: EMIL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: EMBOLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: EMBOX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: EAST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAF
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAME
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAMBLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEAM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAS
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WASE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BLEO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BLO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BOIL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BOLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BUT
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWEST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: ASE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: ASEM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEAX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEAM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEMI
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEMBLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEW
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SWAM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SWAMI
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SAW
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SAWT
2250 [main] INFO gineer.bogglesolver.Solver  - Found: STU
2250 [main] INFO gineer.bogglesolver.Solver  - Found: STUB
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWAS
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TUB
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TUX

Der Quellcode besteht aus 6 Klassen. Ich werde sie unten posten (wenn dies nicht die richtige Praxis auf StackOverflow ist, sagen Sie mir bitte).

gineer.bogglesolver.Main

package gineer.bogglesolver;

import org.apache.log4j.BasicConfigurator;
import org.apache.log4j.Logger;

public class Main
{
    private final static Logger logger = Logger.getLogger(Main.class);

    public static void main(String[] args)
    {
        BasicConfigurator.configure();

        Solver solver = new Solver(4,
                        "FXIE" +
                        "AMLO" +
                        "EWBX" +
                        "ASTU");
        solver.solve();

    }
}

gineer.bogglesolver.Solver

package gineer.bogglesolver;

import gineer.bogglesolver.trie.Trie;
import gineer.bogglesolver.util.Constants;
import gineer.bogglesolver.util.Util;
import org.apache.log4j.Logger;

public class Solver
{
    private char[] puzzle;
    private int maxSize;

    private boolean[] used;
    private StringBuilder stringSoFar;

    private boolean[][] matrix;
    private Trie trie;

    private final static Logger logger = Logger.getLogger(Solver.class);

    public Solver(int size, String puzzle)
    {
        trie = Util.getTrie(size);
        matrix = Util.connectivityMatrix(size);

        maxSize = size * size;
        stringSoFar = new StringBuilder(maxSize);
        used = new boolean[maxSize];

        if (puzzle.length() == maxSize)
        {
            this.puzzle = puzzle.toCharArray();
        }
        else
        {
            logger.error("The puzzle size does not match the size specified: " + puzzle.length());
            this.puzzle = puzzle.substring(0, maxSize).toCharArray();
        }
    }

    public void solve()
    {
        for (int i = 0; i < maxSize; i++)
        {
            traverseAt(i);
        }
    }

    private void traverseAt(int origin)
    {
        stringSoFar.append(puzzle[origin]);
        used[origin] = true;

        //Check if we have a valid word
        if ((stringSoFar.length() >= Constants.MINIMUM_WORD_LENGTH) && (trie.containKey(stringSoFar.toString())))
        {
            logger.info("Found: " + stringSoFar.toString());
        }

        //Find where to go next
        for (int destination = 0; destination < maxSize; destination++)
        {
            if (matrix[origin][destination] && !used[destination] && trie.containPrefix(stringSoFar.toString() + puzzle[destination]))
            {
                traverseAt(destination);
            }
        }

        used[origin] = false;
        stringSoFar.deleteCharAt(stringSoFar.length() - 1);
    }

}

gineer.bogglesolver.trie.Node

package gineer.bogglesolver.trie;

import gineer.bogglesolver.util.Constants;

class Node
{
    Node[] children;
    boolean isKey;

    public Node()
    {
        isKey = false;
        children = new Node[Constants.NUMBER_LETTERS_IN_ALPHABET];
    }

    public Node(boolean key)
    {
        isKey = key;
        children = new Node[Constants.NUMBER_LETTERS_IN_ALPHABET];
    }

    /**
     Method to insert a string to Node and its children

     @param key the string to insert (the string is assumed to be uppercase)
     @return true if the node or one of its children is changed, false otherwise
     */
    public boolean insert(String key)
    {
        //If the key is empty, this node is a key
        if (key.length() == 0)
        {
            if (isKey)
                return false;
            else
            {
                isKey = true;
                return true;
            }
        }
        else
        {//otherwise, insert in one of its child

            int childNodePosition = key.charAt(0) - Constants.LETTER_A;
            if (children[childNodePosition] == null)
            {
                children[childNodePosition] = new Node();
                children[childNodePosition].insert(key.substring(1));
                return true;
            }
            else
            {
                return children[childNodePosition].insert(key.substring(1));
            }
        }
    }

    /**
     Returns whether key is a valid prefix for certain key in this trie.
     For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell", "hello" return true

     @param prefix the prefix to check
     @return true if the prefix is valid, false otherwise
     */
    public boolean containPrefix(String prefix)
    {
        //If the prefix is empty, return true
        if (prefix.length() == 0)
        {
            return true;
        }
        else
        {//otherwise, check in one of its child
            int childNodePosition = prefix.charAt(0) - Constants.LETTER_A;
            return children[childNodePosition] != null && children[childNodePosition].containPrefix(prefix.substring(1));
        }
    }

    /**
     Returns whether key is a valid key in this trie.
     For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell" return false

     @param key the key to check
     @return true if the key is valid, false otherwise
     */
    public boolean containKey(String key)
    {
        //If the prefix is empty, return true
        if (key.length() == 0)
        {
            return isKey;
        }
        else
        {//otherwise, check in one of its child
            int childNodePosition = key.charAt(0) - Constants.LETTER_A;
            return children[childNodePosition] != null && children[childNodePosition].containKey(key.substring(1));
        }
    }

    public boolean isKey()
    {
        return isKey;
    }

    public void setKey(boolean key)
    {
        isKey = key;
    }
}

gineer.bogglesolver.trie.Trie

package gineer.bogglesolver.trie;

public class Trie
{
    Node root;

    public Trie()
    {
        this.root = new Node();
    }

    /**
     Method to insert a string to Node and its children

     @param key the string to insert (the string is assumed to be uppercase)
     @return true if the node or one of its children is changed, false otherwise
     */
    public boolean insert(String key)
    {
        return root.insert(key.toUpperCase());
    }

    /**
     Returns whether key is a valid prefix for certain key in this trie.
     For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell", "hello" return true

     @param prefix the prefix to check
     @return true if the prefix is valid, false otherwise
     */
    public boolean containPrefix(String prefix)
    {
        return root.containPrefix(prefix.toUpperCase());
    }

    /**
     Returns whether key is a valid key in this trie.
     For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell" return false

     @param key the key to check
     @return true if the key is valid, false otherwise
     */
    public boolean containKey(String key)
    {
        return root.containKey(key.toUpperCase());
    }

}

gineer.bogglesolver.util.Konstanten

package gineer.bogglesolver.util;

public class Constants
{

    public static final int NUMBER_LETTERS_IN_ALPHABET = 26;
    public static final char LETTER_A = 'A';
    public static final int MINIMUM_WORD_LENGTH = 3;
    public static final int DEFAULT_PUZZLE_SIZE = 4;
}

gineer.bogglesolver.util.Util

package gineer.bogglesolver.util;

import gineer.bogglesolver.trie.Trie;
import org.apache.log4j.Logger;

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

public class Util
{
    private final static Logger logger = Logger.getLogger(Util.class);
    private static Trie trie;
    private static int size = Constants.DEFAULT_PUZZLE_SIZE;

    /**
     Returns the trie built from the dictionary.  The size is used to eliminate words that are too long.

     @param size the size of puzzle.  The maximum lenght of words in the returned trie is (size * size)
     @return the trie that can be used for puzzle of that size
     */
    public static Trie getTrie(int size)
    {
        if ((trie != null) && size == Util.size)
            return trie;

        trie = new Trie();
        Util.size = size;

        logger.info("Reading the dictionary");
        final File file = new File("dictionary.txt");
        try
        {
            Scanner scanner = new Scanner(file);
            final int maxSize = size * size;
            while (scanner.hasNext())
            {
                String line = scanner.nextLine().replaceAll("[^\\p{Alpha}]", "");

                if (line.length() <= maxSize)
                    trie.insert(line);
            }
        }
        catch (FileNotFoundException e)
        {
            logger.error("Cannot open file", e);
        }

        logger.info("Finish reading the dictionary");
        return trie;
    }

    static boolean[] connectivityRow(int x, int y, int size)
    {
        boolean[] squares = new boolean[size * size];
        for (int offsetX = -1; offsetX <= 1; offsetX++)
        {
            for (int offsetY = -1; offsetY <= 1; offsetY++)
            {
                final int calX = x + offsetX;
                final int calY = y + offsetY;
                if ((calX >= 0) && (calX < size) && (calY >= 0) && (calY < size))
                    squares[calY * size + calX] = true;
            }
        }

        squares[y * size + x] = false;//the current x, y is false

        return squares;
    }

    /**
     Returns the matrix of connectivity between two points.  Point i can go to point j iff matrix[i][j] is true
     Square (x, y) is equivalent to point (size * y + x).  For example, square (1,1) is point 5 in a puzzle of size 4

     @param size the size of the puzzle
     @return the connectivity matrix
     */
    public static boolean[][] connectivityMatrix(int size)
    {
        boolean[][] matrix = new boolean[size * size][];
        for (int x = 0; x < size; x++)
        {
            for (int y = 0; y < size; y++)
            {
                matrix[y * size + x] = connectivityRow(x, y, size);
            }
        }
        return matrix;
    }
}

1 Stimmen

Ich habe meinen Output mit den Outputs anderer StackOverflow-Nutzer verglichen, und es scheint, dass die Outputs von Adam, John und rvarcher einige Wörter fehlen. Zum Beispiel steht "Mwa" im Wörterbuch (yeah!), wird aber nicht in den Outputs von Adam, John und rvarcher zurückgegeben. Es wird zweimal im PHP-Link von Paolo zurückgegeben.

1 Stimmen

Ich habe dies ausprobiert, indem ich es kopiert und eingefügt habe. Es steht "Wird geladen..." und "Lesevorgang beendet...", aber danach wird nichts angezeigt. Es werden keine Treffer angezeigt.

CodeJaeger.com

CodeJaeger ist eine Gemeinschaft für Programmierer, die täglich Hilfe erhalten..
Wir haben viele Inhalte, und Sie können auch Ihre eigenen Fragen stellen oder die Fragen anderer Leute lösen.

Powered by:

X