Wie bereits erwähnt, ist das Pandas-Objekt am effizientesten, wenn es das gesamte Array auf einmal verarbeitet. Für diejenigen, die wie ich eine Schleife durch einen Pandas DataFrame ziehen müssen, um etwas auszuführen, habe ich mindestens drei Möglichkeiten gefunden, dies zu tun. Ich habe einen kurzen Test durchgeführt, um zu sehen, welche der drei Möglichkeiten am wenigsten Zeit in Anspruch nimmt.
t = pd.DataFrame({'a': range(0, 10000), 'b': range(10000, 20000)})
B = []
C = []
A = time.time()
for i,r in t.iterrows():
C.append((r['a'], r['b']))
B.append(time.time()-A)
C = []
A = time.time()
for ir in t.itertuples():
C.append((ir[1], ir[2]))
B.append(time.time()-A)
C = []
A = time.time()
for r in zip(t['a'], t['b']):
C.append((r[0], r[1]))
B.append(time.time()-A)
print B
Ergebnis:
[0.5639059543609619, 0.017839908599853516, 0.005645036697387695]
Das ist wahrscheinlich nicht die beste Methode, um den Zeitaufwand zu messen, aber für mich ist es schnell.
Hier sind einige Vor- und Nachteile IMHO:
- .iterrows(): gibt Index- und Zeilenelemente in separaten Variablen zurück, ist aber deutlich langsamer
- .itertuples(): schneller als .iterrows(), aber Rückgabe des Index zusammen mit den Zeilenelementen, ir[0] ist der Index
- zip: am schnellsten, aber kein Zugriff auf den Index der Zeile
BEARBEITEN 2020/11/10
Für was es wert ist, hier ist eine aktualisierte Benchmark mit einigen anderen Alternativen (perf mit MacBookPro 2,4 GHz Intel Core i9 8 Kerne 32 Go 2667 MHz DDR4)
import sys
import tqdm
import time
import pandas as pd
B = []
t = pd.DataFrame({'a': range(0, 10000), 'b': range(10000, 20000)})
for _ in tqdm.tqdm(range(10)):
C = []
A = time.time()
for i,r in t.iterrows():
C.append((r['a'], r['b']))
B.append({"method": "iterrows", "time": time.time()-A})
C = []
A = time.time()
for ir in t.itertuples():
C.append((ir[1], ir[2]))
B.append({"method": "itertuples", "time": time.time()-A})
C = []
A = time.time()
for r in zip(t['a'], t['b']):
C.append((r[0], r[1]))
B.append({"method": "zip", "time": time.time()-A})
C = []
A = time.time()
for r in zip(*t.to_dict("list").values()):
C.append((r[0], r[1]))
B.append({"method": "zip + to_dict('list')", "time": time.time()-A})
C = []
A = time.time()
for r in t.to_dict("records"):
C.append((r["a"], r["b"]))
B.append({"method": "to_dict('records')", "time": time.time()-A})
A = time.time()
t.agg(tuple, axis=1).tolist()
B.append({"method": "agg", "time": time.time()-A})
A = time.time()
t.apply(tuple, axis=1).tolist()
B.append({"method": "apply", "time": time.time()-A})
print(f'Python {sys.version} on {sys.platform}')
print(f"Pandas version {pd.__version__}")
print(
pd.DataFrame(B).groupby("method").agg(["mean", "std"]).xs("time", axis=1).sort_values("mean")
)
## Output
Python 3.7.9 (default, Oct 13 2020, 10:58:24)
[Clang 12.0.0 (clang-1200.0.32.2)] on darwin
Pandas version 1.1.4
mean std
method
zip + to_dict('list') 0.002353 0.000168
zip 0.003381 0.000250
itertuples 0.007659 0.000728
to_dict('records') 0.025838 0.001458
agg 0.066391 0.007044
apply 0.067753 0.006997
iterrows 0.647215 0.019600