Haben Sie es schon einmal mit "Flatten" versucht? Von matplotlib.cbook.flatten(seq, scalarp=) ?
l=[[1,2,3],[4,5,6], [7], [8,9]]*33
run("list(flatten(l))")
3732 function calls (3303 primitive calls) in 0.007 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.007 0.007 <string>:1(<module>)
429 0.001 0.000 0.001 0.000 cbook.py:475(iterable)
429 0.002 0.000 0.003 0.000 cbook.py:484(is_string_like)
429 0.002 0.000 0.006 0.000 cbook.py:565(is_scalar_or_string)
727/298 0.001 0.000 0.007 0.000 cbook.py:605(flatten)
429 0.000 0.000 0.001 0.000 core.py:5641(isMaskedArray)
858 0.001 0.000 0.001 0.000 {isinstance}
429 0.000 0.000 0.000 0.000 {iter}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
l=[[1,2,3],[4,5,6], [7], [8,9]]*66
run("list(flatten(l))")
7461 function calls (6603 primitive calls) in 0.007 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.007 0.007 <string>:1(<module>)
858 0.001 0.000 0.001 0.000 cbook.py:475(iterable)
858 0.002 0.000 0.003 0.000 cbook.py:484(is_string_like)
858 0.002 0.000 0.006 0.000 cbook.py:565(is_scalar_or_string)
1453/595 0.001 0.000 0.007 0.000 cbook.py:605(flatten)
858 0.000 0.000 0.001 0.000 core.py:5641(isMaskedArray)
1716 0.001 0.000 0.001 0.000 {isinstance}
858 0.000 0.000 0.000 0.000 {iter}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
l=[[1,2,3],[4,5,6], [7], [8,9]]*99
run("list(flatten(l))")
11190 function calls (9903 primitive calls) in 0.010 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.010 0.010 <string>:1(<module>)
1287 0.002 0.000 0.002 0.000 cbook.py:475(iterable)
1287 0.003 0.000 0.004 0.000 cbook.py:484(is_string_like)
1287 0.002 0.000 0.009 0.000 cbook.py:565(is_scalar_or_string)
2179/892 0.001 0.000 0.010 0.000 cbook.py:605(flatten)
1287 0.001 0.000 0.001 0.000 core.py:5641(isMaskedArray)
2574 0.001 0.000 0.001 0.000 {isinstance}
1287 0.000 0.000 0.000 0.000 {iter}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
l=[[1,2,3],[4,5,6], [7], [8,9]]*132
run("list(flatten(l))")
14919 function calls (13203 primitive calls) in 0.013 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.013 0.013 <string>:1(<module>)
1716 0.002 0.000 0.002 0.000 cbook.py:475(iterable)
1716 0.004 0.000 0.006 0.000 cbook.py:484(is_string_like)
1716 0.003 0.000 0.011 0.000 cbook.py:565(is_scalar_or_string)
2905/1189 0.002 0.000 0.013 0.000 cbook.py:605(flatten)
1716 0.001 0.000 0.001 0.000 core.py:5641(isMaskedArray)
3432 0.001 0.000 0.001 0.000 {isinstance}
1716 0.001 0.000 0.001 0.000 {iter}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'
UPDATE Das brachte mich auf eine andere Idee:
l=[[1,2,3],[4,5,6], [7], [8,9]]*33
run("flattenlist(l)")
564 function calls (432 primitive calls) in 0.000 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
133/1 0.000 0.000 0.000 0.000 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.000 0.000 0.000 0.000 <string>:1(<module>)
429 0.000 0.000 0.000 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
l=[[1,2,3],[4,5,6], [7], [8,9]]*66
run("flattenlist(l)")
1125 function calls (861 primitive calls) in 0.001 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
265/1 0.001 0.000 0.001 0.001 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.000 0.000 0.001 0.001 <string>:1(<module>)
858 0.000 0.000 0.000 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
l=[[1,2,3],[4,5,6], [7], [8,9]]*99
run("flattenlist(l)")
1686 function calls (1290 primitive calls) in 0.001 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
397/1 0.001 0.000 0.001 0.001 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.000 0.000 0.001 0.001 <string>:1(<module>)
1287 0.000 0.000 0.000 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
l=[[1,2,3],[4,5,6], [7], [8,9]]*132
run("flattenlist(l)")
2247 function calls (1719 primitive calls) in 0.002 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
529/1 0.001 0.000 0.002 0.002 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.000 0.000 0.002 0.002 <string>:1(<module>)
1716 0.001 0.000 0.001 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
l=[[1,2,3],[4,5,6], [7], [8,9]]*1320
run("flattenlist(l)")
22443 function calls (17163 primitive calls) in 0.016 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
5281/1 0.011 0.000 0.016 0.016 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.000 0.000 0.016 0.016 <string>:1(<module>)
17160 0.005 0.000 0.005 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
Um also zu testen, wie effektiv es ist, wenn rekursiv tiefer wird: Wie viel tiefer?
l=[[1,2,3],[4,5,6], [7], [8,9]]*1320
new=[l]*33
run("flattenlist(new)")
740589 function calls (566316 primitive calls) in 0.418 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
174274/1 0.281 0.000 0.417 0.417 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.001 0.001 0.418 0.418 <string>:1(<module>)
566313 0.136 0.000 0.136 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
new=[l]*66
run("flattenlist(new)")
1481175 function calls (1132629 primitive calls) in 0.809 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
348547/1 0.542 0.000 0.807 0.807 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.002 0.002 0.809 0.809 <string>:1(<module>)
1132626 0.266 0.000 0.266 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
new=[l]*99
run("flattenlist(new)")
2221761 function calls (1698942 primitive calls) in 1.211 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
522820/1 0.815 0.000 1.208 1.208 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.002 0.002 1.211 1.211 <string>:1(<module>)
1698939 0.393 0.000 0.393 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
new=[l]*132
run("flattenlist(new)")
2962347 function calls (2265255 primitive calls) in 1.630 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
697093/1 1.091 0.000 1.627 1.627 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.003 0.003 1.630 1.630 <string>:1(<module>)
2265252 0.536 0.000 0.536 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
new=[l]*1320
run("flattenlist(new)")
29623443 function calls (22652523 primitive calls) in 16.103 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
6970921/1 10.842 0.000 16.069 16.069 <ipython-input-55-39b139bad497>:4(flattenlist)
1 0.034 0.034 16.103 16.103 <string>:1(<module>)
22652520 5.227 0.000 5.227 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
Ich werde wetten, "flattenlist" Ich werde diese eher als matploblib für eine lange lange Zeit zu verwenden, es sei denn, ich will eine Ausbeute Generator und schnelles Ergebnis als "flatten" verwendet in matploblib.cbook
Das ist schnell.
:
typ=(list,tuple)
def flattenlist(d):
thelist = []
for x in d:
if not isinstance(x,typ):
thelist += [x]
else:
thelist += flattenlist(x)
return thelist
31 Stimmen
Ich verstehe nicht, warum alle map(lambda x: list(x), other) verwenden - ist das nicht gleichbedeutend mit map(list, other)? Das list builtin ist aufrufbar...
0 Stimmen
Es ist gleichwertig. Glücklicherweise hat Prairie Dogg erkannt, dass dieser Code hässlich ist :)
0 Stimmen
Ach ja, ich sehe, dass Sie in Ihrer Antwort darauf hingewiesen haben, @recursive. Entschuldigung für die Redundanz! :-)
2 Stimmen
@recursive: Ja, ich bin wirklich rot geworden, nachdem du mich darauf hingewiesen hast, wie viele Dinge in meiner Erklärung zur Reduzierung redundant waren. Ich habe auf jeden Fall eine Menge aus dieser Frage gelernt, also vielen Dank an alle!
0 Stimmen
Ich lerne jetzt schon eine Weile Ruby und hatte gerade die Gelegenheit, ein Ruby Idiom für ein ähnliches Problem zu verwenden. FWIW: [[1,2],[3],[5,89],[],[6]].flatten -> [1, 2, 3, 5, 89, 6]
1 Stimmen
Reduce(list.__add__, (list(mi.image_set.all()) for mi in list_of_menuitems)) ist nicht korrekt für den Fall, dass alle Listen leer sind. Es sollte reduce(list.__add__, (list(mi.image_set.all()) for mi in list_of_menuitems), []) lauten.
1 Stimmen
Diese Frage machte stackoverflow.com/q/952914/1206998 als dupliziert geschlossen. Allerdings ist es viel weniger klar wegen all der django irrelevant Zeug. Sollte es neu geschrieben werden?
0 Stimmen
"Aber ich bekomme dort Probleme der Sorte NameError, weil der Name 'menuitem' nicht definiert ist." Das Problem bei diesem Ansatz ist einfach, dass die
for
Die Klauseln sind in der falschen Reihenfolge. Ich habe einen weiteren doppelten Link hinzugefügt, um die richtige Technik für diesen Ansatz zu erläutern.