Für eine Liste von 10 Werten gibt es 10! mögliche Anordnungen oder Permutationen. Warum liefert random.shuffle nach nur 5000 Versuchen Duplikate?
>>> L = range(10)
>>> rL = list()
>>> for i in range(5000):
... random.shuffle(L)
... rL.append(L[:])
...
>>> rL = [tuple(e) for e in rL]
>>> len(set(rL))
4997
>>> for i,t in enumerate(rL):
... if rL.count(t) > 1:
... print i,t
...
102 (7, 5, 2, 4, 0, 6, 9, 3, 1, 8)
258 (1, 4, 0, 2, 7, 3, 5, 9, 6, 8)
892 (1, 4, 0, 2, 7, 3, 5, 9, 6, 8)
2878 (7, 5, 2, 4, 0, 6, 9, 3, 1, 8)
4123 (5, 8, 0, 1, 7, 3, 2, 4, 6, 9)
4633 (5, 8, 0, 1, 7, 3, 2, 4, 6, 9)
>>> 10*9*8*7*6*5*4*3*2
3628800
>>> 2**19937 - 1
431542479738816264805523551633791983905393 [snip]
>>> L = list()
>>> for i in range(5000):
... L.append(random.choice(xrange(3628800)))
...
>>> len(set(L))
4997
Edit: FWIW, wenn die Wahrscheinlichkeit, dass bei einem einzelnen Paar nicht zwei gleich sind, wie folgt ist: p = (10! - 1) / 10! und die Anzahl der Kombinationen ist: C = 5000! / 4998! * 2! = 5000 * 4999 / 2 dann ist die Wahrscheinlichkeit, ein Duplikat zu haben, gleich:
>>> import math
>>> f = math.factorial(10)
>>> p = 1.0*(f-1)/f
>>> C = 5000.0*4999/2
>>> 1 - p**C
0.96806256495611798