652 Stimmen

Vergleich von zwei Byte-Arrays in .NET

Wie kann ich das schnell machen?

Sicher kann ich das tun:

static bool ByteArrayCompare(byte[] a1, byte[] a2)
{
    if (a1.Length != a2.Length)
        return false;

    for (int i=0; i<a1.Length; i++)
        if (a1[i]!=a2[i])
            return false;

    return true;
}

Aber ich suche entweder einen BCL Funktion oder eine andere hoch optimierte und bewährte Methode, dies zu tun.

java.util.Arrays.equals((sbyte[])(Array)a1, (sbyte[])(Array)a2);

funktioniert gut, aber es sieht nicht so aus, als würde das für x64 funktionieren.

Beachten Sie meine superschnelle Antwort ici .

1voto

Dies ist ähnlich wie bei anderen, aber der Unterschied hier ist, dass es kein Durchfallen zur nächsthöheren Anzahl von Bytes gibt, die ich auf einmal prüfen kann, z.B. wenn ich 63 Bytes habe (in meinem SIMD-Beispiel), kann ich die Gleichheit der ersten 32 Bytes und dann der letzten 32 Bytes prüfen, was schneller ist als die Prüfung von 32 Bytes, 16 Bytes, 8 Bytes und so weiter. Die erste Prüfung, die Sie eingeben, ist die einzige Prüfung, die Sie brauchen, um alle Bytes zu vergleichen.

In meinen Tests liegt es an der Spitze, aber nur um Haaresbreite.

Der folgende Code ist genau so, wie ich es in airbreather/ArrayComparePerf.cs getestet habe.

public unsafe bool SIMDNoFallThrough()    #requires  System.Runtime.Intrinsics.X86
{
    if (a1 == null || a2 == null)
        return false;

    int length0 = a1.Length;

    if (length0 != a2.Length) return false;

    fixed (byte* b00 = a1, b01 = a2)
    {
        byte* b0 = b00, b1 = b01, last0 = b0 + length0, last1 = b1 + length0, last32 = last0 - 31;

        if (length0 > 31)
        {
            while (b0 < last32)
            {
                if (Avx2.MoveMask(Avx2.CompareEqual(Avx.LoadVector256(b0), Avx.LoadVector256(b1))) != -1)
                    return false;
                b0 += 32;
                b1 += 32;
            }
            return Avx2.MoveMask(Avx2.CompareEqual(Avx.LoadVector256(last0 - 32), Avx.LoadVector256(last1 - 32))) == -1;
        }

        if (length0 > 15)
        {
            if (Sse2.MoveMask(Sse2.CompareEqual(Sse2.LoadVector128(b0), Sse2.LoadVector128(b1))) != 65535)
                return false;
            return Sse2.MoveMask(Sse2.CompareEqual(Sse2.LoadVector128(last0 - 16), Sse2.LoadVector128(last1 - 16))) == 65535;
        }

        if (length0 > 7)
        {
            if (*(ulong*)b0 != *(ulong*)b1)
                return false;
            return *(ulong*)(last0 - 8) == *(ulong*)(last1 - 8);
        }

        if (length0 > 3)
        {
            if (*(uint*)b0 != *(uint*)b1)
                return false;
            return *(uint*)(last0 - 4) == *(uint*)(last1 - 4);
        }

        if (length0 > 1)
        {
            if (*(ushort*)b0 != *(ushort*)b1)
                return false;
            return *(ushort*)(last0 - 2) == *(ushort*)(last1 - 2);
        }

        return *b0 == *b1;
    }
}

Wenn kein SIMD bevorzugt wird, wird die gleiche Methode auf den bestehenden LongPointers-Algorithmus angewandt:

public unsafe bool LongPointersNoFallThrough()
{
    if (a1 == null || a2 == null || a1.Length != a2.Length)
        return false;
    fixed (byte* p1 = a1, p2 = a2)
    {
        byte* x1 = p1, x2 = p2;
        int l = a1.Length;
        if ((l & 8) != 0)
        {
            for (int i = 0; i < l / 8; i++, x1 += 8, x2 += 8)
                if (*(long*)x1 != *(long*)x2) return false;
            return *(long*)(x1 + (l - 8)) == *(long*)(x2 + (l - 8));
        }
        if ((l & 4) != 0)
        {
            if (*(int*)x1 != *(int*)x2) return false; x1 += 4; x2 += 4;
            return *(int*)(x1 + (l - 4)) == *(int*)(x2 + (l - 4));
        }
        if ((l & 2) != 0)
        {
            if (*(short*)x1 != *(short*)x2) return false; x1 += 2; x2 += 2;
            return *(short*)(x1 + (l - 2)) == *(short*)(x2 + (l - 2));
        }
        return *x1 == *x2;
    }
}

1voto

Casey Chester Punkte 238

Ich habe mich für eine Lösung entschieden, die von der EqualBytesLongUnrolled-Methode von ArekBulski inspiriert ist und eine zusätzliche Optimierung enthält. In meinem Fall neigen Array-Unterschiede in Arrays dazu, in der Nähe des Endes der Arrays zu liegen. Beim Testen habe ich festgestellt, dass, wenn dies bei großen Arrays der Fall ist, die Möglichkeit, Arrayelemente in umgekehrter Reihenfolge zu vergleichen, dieser Lösung einen enormen Leistungsgewinn gegenüber der memcmp-basierten Lösung verschafft. Hier ist die Lösung:

public enum CompareDirection { Forward, Backward }

private static unsafe bool UnsafeEquals(byte[] a, byte[] b, CompareDirection direction = CompareDirection.Forward)
{
    // returns when a and b are same array or both null
    if (a == b) return true;

    // if either is null or different lengths, can't be equal
    if (a == null || b == null || a.Length != b.Length)
        return false;

    const int UNROLLED = 16;                // count of longs 'unrolled' in optimization
    int size = sizeof(long) * UNROLLED;     // 128 bytes (min size for 'unrolled' optimization)
    int len = a.Length;
    int n = len / size;         // count of full 128 byte segments
    int r = len % size;         // count of remaining 'unoptimized' bytes

    // pin the arrays and access them via pointers
    fixed (byte* pb_a = a, pb_b = b)
    {
        if (r > 0 && direction == CompareDirection.Backward)
        {
            byte* pa = pb_a + len - 1;
            byte* pb = pb_b + len - 1;
            byte* phead = pb_a + len - r;
            while(pa >= phead)
            {
                if (*pa != *pb) return false;
                pa--;
                pb--;
            }
        }

        if (n > 0)
        {
            int nOffset = n * size;
            if (direction == CompareDirection.Forward)
            {
                long* pa = (long*)pb_a;
                long* pb = (long*)pb_b;
                long* ptail = (long*)(pb_a + nOffset);
                while (pa < ptail)
                {
                    if (*(pa + 0) != *(pb + 0) || *(pa + 1) != *(pb + 1) ||
                        *(pa + 2) != *(pb + 2) || *(pa + 3) != *(pb + 3) ||
                        *(pa + 4) != *(pb + 4) || *(pa + 5) != *(pb + 5) ||
                        *(pa + 6) != *(pb + 6) || *(pa + 7) != *(pb + 7) ||
                        *(pa + 8) != *(pb + 8) || *(pa + 9) != *(pb + 9) ||
                        *(pa + 10) != *(pb + 10) || *(pa + 11) != *(pb + 11) ||
                        *(pa + 12) != *(pb + 12) || *(pa + 13) != *(pb + 13) ||
                        *(pa + 14) != *(pb + 14) || *(pa + 15) != *(pb + 15)
                    )
                    {
                        return false;
                    }
                    pa += UNROLLED;
                    pb += UNROLLED;
                }
            }
            else
            {
                long* pa = (long*)(pb_a + nOffset);
                long* pb = (long*)(pb_b + nOffset);
                long* phead = (long*)pb_a;
                while (phead < pa)
                {
                    if (*(pa - 1) != *(pb - 1) || *(pa - 2) != *(pb - 2) ||
                        *(pa - 3) != *(pb - 3) || *(pa - 4) != *(pb - 4) ||
                        *(pa - 5) != *(pb - 5) || *(pa - 6) != *(pb - 6) ||
                        *(pa - 7) != *(pb - 7) || *(pa - 8) != *(pb - 8) ||
                        *(pa - 9) != *(pb - 9) || *(pa - 10) != *(pb - 10) ||
                        *(pa - 11) != *(pb - 11) || *(pa - 12) != *(pb - 12) ||
                        *(pa - 13) != *(pb - 13) || *(pa - 14) != *(pb - 14) ||
                        *(pa - 15) != *(pb - 15) || *(pa - 16) != *(pb - 16)
                    )
                    {
                        return false;
                    }
                    pa -= UNROLLED;
                    pb -= UNROLLED;
                }
            }
        }

        if (r > 0 && direction == CompareDirection.Forward)
        {
            byte* pa = pb_a + len - r;
            byte* pb = pb_b + len - r;
            byte* ptail = pb_a + len;
            while(pa < ptail)
            {
                if (*pa != *pb) return false;
                pa++;
                pb++;
            }
        }
    }

    return true;
}

1voto

Markus Olsson Punkte 21942

Tut mir leid, wenn Sie nach einer verwalteten Methode suchen, machen Sie es schon richtig, und meines Wissens gibt es in der BCL keine eingebaute Methode, um dies zu tun.

Sie sollten einige anfängliche Null-Prüfungen hinzufügen und dann einfach wiederverwenden, als ob es in BCL war.

0voto

James Curran Punkte 98228

Diese Version ist mit Sicherheit viel langsamer als alle anderen hier aufgeführten Versionen, aber es hat Spaß gemacht, sie zu schreiben.

static bool ByteArrayEquals(byte[] a1, byte[] a2) 
{
    return a1.Zip(a2, (l, r) => l == r).All(x => x);
}

-2voto

API_Base Punkte 11

使用方法 SequenceEquals für diesen Vergleich.

CodeJaeger.com

CodeJaeger ist eine Gemeinschaft für Programmierer, die täglich Hilfe erhalten..
Wir haben viele Inhalte, und Sie können auch Ihre eigenen Fragen stellen oder die Fragen anderer Leute lösen.

Powered by:

X