Die Antworten auf diese alte, aber wichtige Frage sind sehr unterschiedlich schnell.
El schnellste der Lösung gepostet von kxr.
Allerdings ist dies sogar schneller und ansonsten nicht hier:
def f1(arr, find, replace):
# fast and readable
base=0
for cnt in range(arr.count(find)):
offset=arr.index(find, base)
arr[offset]=replace
base=offset+1
Hier ist der Zeitplan für die verschiedenen Lösungen. Die schnelleren Lösungen sind 3X schneller als akzeptierte Antwort und 5X schneller als die langsamste Antwort hier.
Fairerweise muss man sagen, dass alle Methoden die Ersetzung des an die Funktion gesendeten Arrays inlace vornehmen müssen.
Bitte beachten Sie den unten stehenden Zeitcode:
def f1(arr, find, replace):
# fast and readable
base=0
for cnt in range(arr.count(find)):
offset=arr.index(find, base)
arr[offset]=replace
base=offset+1
def f2(arr,find,replace):
# accepted answer
for i,e in enumerate(arr):
if e==find:
arr[i]=replace
def f3(arr,find,replace):
# in place list comprehension
arr[:]=[replace if e==find else e for e in arr]
def f4(arr,find,replace):
# in place map and lambda -- SLOW
arr[:]=list(map(lambda x: x if x != find else replace, arr))
def f5(arr,find,replace):
# find index with comprehension
for i in [i for i, e in enumerate(arr) if e==find]:
arr[i]=replace
def f6(arr,find,replace):
# FASTEST but a little les clear
try:
while True:
arr[arr.index(find)]=replace
except ValueError:
pass
def f7(lst, old, new):
"""replace list elements (inplace)"""
i = -1
try:
while 1:
i = lst.index(old, i + 1)
lst[i] = new
except ValueError:
pass
import time
def cmpthese(funcs, args=(), cnt=1000, rate=True, micro=True):
"""Generate a Perl style function benchmark"""
def pprint_table(table):
"""Perl style table output"""
def format_field(field, fmt='{:,.0f}'):
if type(field) is str: return field
if type(field) is tuple: return field[1].format(field[0])
return fmt.format(field)
def get_max_col_w(table, index):
return max([len(format_field(row[index])) for row in table])
col_paddings=[get_max_col_w(table, i) for i in range(len(table[0]))]
for i,row in enumerate(table):
# left col
row_tab=[row[0].ljust(col_paddings[0])]
# rest of the cols
row_tab+=[format_field(row[j]).rjust(col_paddings[j]) for j in range(1,len(row))]
print(' '.join(row_tab))
results={}
for i in range(cnt):
for f in funcs:
start=time.perf_counter_ns()
f(*args)
stop=time.perf_counter_ns()
results.setdefault(f.__name__, []).append(stop-start)
results={k:float(sum(v))/len(v) for k,v in results.items()}
fastest=sorted(results,key=results.get, reverse=True)
table=[['']]
if rate: table[0].append('rate/sec')
if micro: table[0].append('\u03bcsec/pass')
table[0].extend(fastest)
for e in fastest:
tmp=[e]
if rate:
tmp.append('{:,}'.format(int(round(float(cnt)*1000000.0/results[e]))))
if micro:
tmp.append('{:,.1f}'.format(results[e]/float(cnt)))
for x in fastest:
if x==e: tmp.append('--')
else: tmp.append('{:.1%}'.format((results[x]-results[e])/results[e]))
table.append(tmp)
pprint_table(table)
if __name__=='__main__':
import sys
import time
print(sys.version)
cases=(
('small, found', 9, 100),
('small, not found', 99, 100),
('large, found', 9, 1000),
('large, not found', 99, 1000)
)
for txt, tgt, mul in cases:
print(f'\n{txt}:')
arr=[1,2,3,4,5,6,7,8,9,0]*mul
args=(arr,tgt,'X')
cmpthese([f1,f2,f3, f4, f5, f6, f7],args)
Und die Ergebnisse:
3.9.1 (default, Feb 3 2021, 07:38:02)
[Clang 12.0.0 (clang-1200.0.32.29)]
small, found:
rate/sec sec/pass f4 f3 f5 f2 f6 f7 f1
f4 133,982 7.5 -- -38.8% -49.0% -52.5% -78.5% -78.6% -82.9%
f3 219,090 4.6 63.5% -- -16.6% -22.4% -64.8% -65.0% -72.0%
f5 262,801 3.8 96.1% 20.0% -- -6.9% -57.8% -58.0% -66.4%
f2 282,259 3.5 110.7% 28.8% 7.4% -- -54.6% -54.9% -63.9%
f6 622,122 1.6 364.3% 184.0% 136.7% 120.4% -- -0.7% -20.5%
f7 626,367 1.6 367.5% 185.9% 138.3% 121.9% 0.7% -- -19.9%
f1 782,307 1.3 483.9% 257.1% 197.7% 177.2% 25.7% 24.9% --
small, not found:
rate/sec sec/pass f4 f5 f2 f3 f6 f7 f1
f4 13,846 72.2 -- -40.3% -41.4% -47.8% -85.2% -85.4% -86.2%
f5 23,186 43.1 67.5% -- -1.9% -12.5% -75.2% -75.5% -76.9%
f2 23,646 42.3 70.8% 2.0% -- -10.8% -74.8% -75.0% -76.4%
f3 26,512 37.7 91.5% 14.3% 12.1% -- -71.7% -72.0% -73.5%
f6 93,656 10.7 576.4% 303.9% 296.1% 253.3% -- -1.0% -6.5%
f7 94,594 10.6 583.2% 308.0% 300.0% 256.8% 1.0% -- -5.6%
f1 100,206 10.0 623.7% 332.2% 323.8% 278.0% 7.0% 5.9% --
large, found:
rate/sec sec/pass f4 f2 f5 f3 f6 f7 f1
f4 145 6,889.4 -- -33.3% -34.8% -48.6% -85.3% -85.4% -85.8%
f2 218 4,593.5 50.0% -- -2.2% -22.8% -78.0% -78.1% -78.6%
f5 223 4,492.4 53.4% 2.3% -- -21.1% -77.5% -77.6% -78.2%
f3 282 3,544.0 94.4% 29.6% 26.8% -- -71.5% -71.6% -72.3%
f6 991 1,009.5 582.4% 355.0% 345.0% 251.1% -- -0.4% -2.8%
f7 995 1,005.4 585.2% 356.9% 346.8% 252.5% 0.4% -- -2.4%
f1 1,019 981.3 602.1% 368.1% 357.8% 261.2% 2.9% 2.5% --
large, not found:
rate/sec sec/pass f4 f5 f2 f3 f6 f7 f1
f4 147 6,812.0 -- -35.0% -36.4% -48.9% -85.7% -85.8% -86.1%
f5 226 4,424.8 54.0% -- -2.0% -21.3% -78.0% -78.1% -78.6%
f2 231 4,334.9 57.1% 2.1% -- -19.6% -77.6% -77.7% -78.2%
f3 287 3,484.0 95.5% 27.0% 24.4% -- -72.1% -72.2% -72.8%
f6 1,028 972.3 600.6% 355.1% 345.8% 258.3% -- -0.4% -2.7%
f7 1,033 968.2 603.6% 357.0% 347.7% 259.8% 0.4% -- -2.3%
f1 1,057 946.2 619.9% 367.6% 358.1% 268.2% 2.8% 2.3% --